mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-18 07:31:19 +00:00
impl shard optim v2 and add unit test
This commit is contained in:
@@ -1,12 +1,16 @@
|
||||
import torch
|
||||
from . import BaseOpHook
|
||||
import torch.distributed as dist
|
||||
from colossalai.registry import OPHOOKS
|
||||
|
||||
from . import BaseOpHook
|
||||
|
||||
|
||||
@OPHOOKS.register_module
|
||||
class ShardParamHook(BaseOpHook):
|
||||
"""
|
||||
A hook to process sharded param before and afther FWD and BWD operator executing.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@@ -17,25 +21,32 @@ class ShardParamHook(BaseOpHook):
|
||||
for param in module.parameters():
|
||||
assert hasattr(param, 'ca_attr')
|
||||
param.ca_attr.gather()
|
||||
if dist.get_rank() == 0:
|
||||
print(f'{param._name} pre fwd shape {param.ca_attr.payload("cpu").shape}')
|
||||
|
||||
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
||||
for param in module.parameters():
|
||||
assert hasattr(param, 'ca_attr')
|
||||
param.ca_attr.shard()
|
||||
if dist.get_rank() == 0:
|
||||
print(f'{param._name} post fwd shape {param.ca_attr.payload("cpu").shape}')
|
||||
|
||||
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
||||
for param in module.parameters():
|
||||
assert hasattr(param, 'ca_attr')
|
||||
param.ca_attr.gather()
|
||||
if dist.get_rank() == 0:
|
||||
print(f'{param._name} pre bwd shape {param.ca_attr.payload("cpu").shape}')
|
||||
|
||||
def post_bwd_exec(self, module: torch.nn.Module, input):
|
||||
for param in module.parameters():
|
||||
assert hasattr(param, 'ca_attr')
|
||||
param.ca_attr.shard()
|
||||
if dist.get_rank() == 0:
|
||||
print(f'{param._name} post bwd shape {param.ca_attr.payload("cpu").shape}')
|
||||
|
||||
def pre_iter(self):
|
||||
pass
|
||||
|
||||
def post_iter(self):
|
||||
pass
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from .sharded_optim import ShardedOptimizer
|
||||
from .sharded_optim_v2 import ShardedOptimizerV2
|
||||
|
||||
__all__ = ['ShardedOptimizer']
|
||||
__all__ = ['ShardedOptimizer', 'ShardedOptimizerV2']
|
||||
|
@@ -14,6 +14,7 @@ from torch.distributed import ProcessGroup
|
||||
from torch.nn.parameter import Parameter
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from ..sharded_model._zero3_utils import free_storage
|
||||
from ._utils import has_inf_or_nan
|
||||
|
||||
|
||||
@@ -62,6 +63,8 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||
if hasattr(p, 'ca_attr'):
|
||||
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
||||
self.master_params[p] = p.ca_attr.payload(self.device)
|
||||
if dist.get_rank() == 0:
|
||||
print(f'load payload {p._name} {self.master_params[p].shape}')
|
||||
else:
|
||||
self.master_params[p] = p.data.to(device=self.device)
|
||||
if torch.is_floating_point(self.master_params[p]) and self.master_params[p].dtype != torch.float:
|
||||
@@ -84,19 +87,27 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||
for p in group['params']:
|
||||
p.data = self.master_params[p]
|
||||
ret = self.optim.step(*args, **kwargs)
|
||||
# Write master param to payload and set p.data to None
|
||||
# Write master param to payload
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
if hasattr(p, 'ca_attr'):
|
||||
# TODO: update payload
|
||||
p.data = None
|
||||
if dist.get_rank() == 0:
|
||||
print(f'write {p._name} {p.shape} orig_shape {p.ca_attr._origin_shape} \
|
||||
payload shape {p.ca_attr._param_payload.shape} sharded {p.ca_attr.is_sharded}')
|
||||
p.ca_attr.set_payload(p.data)
|
||||
# We cannot set p.data to None directly, so we free storage
|
||||
free_storage(p.data)
|
||||
return ret
|
||||
|
||||
def backward(self, loss: Tensor) -> None:
|
||||
loss = self.loss_scale * loss
|
||||
self.optim_state = OptimState.SCALED
|
||||
if self.model_is_sharded:
|
||||
if dist.get_rank() == 0:
|
||||
print('sharded model backward')
|
||||
self.model.backward(loss)
|
||||
if dist.get_rank() == 0:
|
||||
print('sharded model backward done')
|
||||
else:
|
||||
super().backward(loss)
|
||||
|
||||
|
Reference in New Issue
Block a user