[shardformer] fix pipeline forward error if custom layer distribution is used (#5189)

* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution

* Change static methods for t5 layer distribution to member functions

* Change static methods for whisper layer distribution to member functions

* Replace whisper policy usage with self one

* Fix test case to use non-static layer distribution methods

* fix: fix typo

---------

Co-authored-by: Wenhao Chen <cwher@outlook.com>
This commit is contained in:
Insu Jang
2024-03-27 01:57:00 -04:00
committed by GitHub
parent e6707a6e8d
commit 00525f7772
18 changed files with 136 additions and 106 deletions

View File

@@ -10,9 +10,12 @@ def test_t5_pipeline_distribution():
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
}
policy = T5BasePolicy()
for i in range(num_test_cases):
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
_, decoder_starting_stage = policy.distribute_t5_layers(
test_dict["num_encoder_layers"][i],
test_dict["num_decoder_layers"][i],
test_dict["num_stages"][i],
)
assert test_dict["decoder_starting_stage"][i] == decoder_starting_stage
@@ -32,14 +35,15 @@ def test_t5_pipeline_layers():
}
for i in range(num_test_cases):
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
policy = T5BasePolicy()
layers_per_stage, decoder_starting_stage = policy.distribute_t5_layers(
test_dict["num_encoder_layers"][i],
test_dict["num_decoder_layers"][i],
test_dict["num_stages"][i],
)
for stage in range(test_dict["num_stages"][i]):
start_idx, end_idx = test_dict["layers_per_stage"][i][stage]
predicted_start, predicted_end = T5BasePolicy.get_t5_stage_index(
layers_per_stage, stage, decoder_starting_stage
)
predicted_start, predicted_end = policy.get_t5_stage_index(layers_per_stage, stage, decoder_starting_stage)
assert start_idx == predicted_start
assert end_idx == predicted_end

View File

@@ -10,9 +10,12 @@ def test_whisper_pipeline_distribution():
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
}
policy = WhisperPolicy()
for i in range(num_test_cases):
_, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
_, decoder_starting_stage = policy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i],
test_dict["num_decoder_layers"][i],
test_dict["num_stages"][i],
)
assert test_dict["decoder_starting_stage"][i] == decoder_starting_stage
@@ -31,14 +34,17 @@ def test_whisper_pipeline_layers():
],
}
policy = WhisperPolicy()
for i in range(num_test_cases):
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
layers_per_stage, decoder_starting_stage = policy.distribute_whisper_layers(
test_dict["num_encoder_layers"][i],
test_dict["num_decoder_layers"][i],
test_dict["num_stages"][i],
)
for stage in range(test_dict["num_stages"][i]):
start_idx, end_idx = test_dict["layers_per_stage"][i][stage]
predicted_start, predicted_end = WhisperPolicy.get_whisper_stage_index(
predicted_start, predicted_end = policy.get_whisper_stage_index(
layers_per_stage, stage, decoder_starting_stage
)
assert start_idx == predicted_start