mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 07:00:37 +00:00
[inference]fix import bug and delete down useless init (#4830)
* fix import bug and release useless init * fix * fix * fix
This commit is contained in:
@@ -1,5 +1,3 @@
|
||||
import _utils
|
||||
|
||||
from .bloom import BloomInferenceForwards
|
||||
from .chatglm2 import ChatGLM2InferenceForwards
|
||||
from .llama import LlamaInferenceForwards
|
||||
|
@@ -1,10 +1,67 @@
|
||||
"""
|
||||
Utils for model inference
|
||||
"""
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest
|
||||
|
||||
|
||||
def copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
||||
"""
|
||||
This function copies the key and value cache to the memory cache
|
||||
Args:
|
||||
layer_id : id of current layer
|
||||
key_buffer : key cache
|
||||
value_buffer : value cache
|
||||
context_mem_index : index of memory cache in kv cache manager
|
||||
mem_manager : cache manager
|
||||
"""
|
||||
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
return
|
||||
|
||||
|
||||
def init_to_get_rotary(self, base=10000, use_elem=False):
|
||||
"""
|
||||
This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer
|
||||
Args:
|
||||
self : Model that holds the rotary positional embedding
|
||||
base : calculation arg
|
||||
use_elem : activated when using chatglm-based models
|
||||
"""
|
||||
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
|
||||
if not hasattr(self.config, "rope_scaling"):
|
||||
rope_scaling_factor = 1.0
|
||||
else:
|
||||
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
|
||||
|
||||
if hasattr(self.config, "max_sequence_length"):
|
||||
max_seq_len = self.config.max_sequence_length
|
||||
elif hasattr(self.config, "max_position_embeddings"):
|
||||
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
|
||||
else:
|
||||
max_seq_len = 2048 * rope_scaling_factor
|
||||
base = float(base)
|
||||
|
||||
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
ntk_alpha = float(os.environ.get("INFER_NTK_ALPHA", None))
|
||||
|
||||
if ntk_alpha is not None:
|
||||
ntk_alpha = float(ntk_alpha)
|
||||
assert ntk_alpha >= 1, "NTK alpha must be greater than or equal to 1"
|
||||
if ntk_alpha > 1:
|
||||
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
|
||||
max_seq_len *= ntk_alpha
|
||||
base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula
|
||||
|
||||
n_elem = self.config.head_dim_
|
||||
if use_elem:
|
||||
n_elem //= 2
|
||||
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
|
||||
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
|
||||
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
|
||||
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
|
||||
|
@@ -5,12 +5,9 @@ from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaModel, LlamaRMSNorm
|
||||
|
||||
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
||||
from colossalai.kernel.triton import (
|
||||
copy_kv_cache_to_dest,
|
||||
llama_context_attn_fwd,
|
||||
rotary_embedding_fwd,
|
||||
token_attention_fwd,
|
||||
)
|
||||
from colossalai.kernel.triton import llama_context_attn_fwd, rotary_embedding_fwd, token_attention_fwd
|
||||
|
||||
from ._utils import copy_kv_to_mem_cache
|
||||
|
||||
try:
|
||||
from vllm import layernorm_ops, pos_encoding_ops
|
||||
@@ -46,12 +43,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def _copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
||||
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
return
|
||||
|
||||
|
||||
class LlamaInferenceForwards:
|
||||
"""
|
||||
This class holds forwards for llama inference.
|
||||
@@ -285,11 +276,6 @@ class LlamaInferenceForwards:
|
||||
rotary_embedding_fwd(query_states.view(-1, self.num_heads, self.head_dim), cos, sin)
|
||||
rotary_embedding_fwd(key_states.view(-1, self.num_heads, self.head_dim), cos, sin)
|
||||
|
||||
def _copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
||||
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
return
|
||||
|
||||
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
||||
key_states = key_states.reshape(-1, self.num_heads, self.head_dim)
|
||||
value_states = value_states.reshape(-1, self.num_heads, self.head_dim)
|
||||
@@ -298,7 +284,7 @@ class LlamaInferenceForwards:
|
||||
# first token generation
|
||||
|
||||
# copy key and value calculated in current step to memory manager
|
||||
_copy_kv_to_mem_cache(
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_states,
|
||||
value_states,
|
||||
@@ -331,7 +317,7 @@ class LlamaInferenceForwards:
|
||||
else:
|
||||
# if decode is not contiguous, use triton kernel to copy key and value cache
|
||||
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
|
||||
_copy_kv_to_mem_cache(
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_states,
|
||||
value_states,
|
||||
|
@@ -1,7 +1,5 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
||||
ChatGLMForConditionalGeneration,
|
||||
ChatGLMModel,
|
||||
@@ -9,13 +7,14 @@ from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
||||
GLMTransformer,
|
||||
SelfAttention,
|
||||
)
|
||||
|
||||
# import colossalai
|
||||
from colossalai.shardformer.policies.chatglm2 import ChatGLMModelPolicy
|
||||
|
||||
from ..modeling.chatglm2 import ChatGLM2InferenceForwards, _init_to_get_rotary
|
||||
from ..modeling._utils import init_to_get_rotary
|
||||
from ..modeling.chatglm2 import ChatGLM2InferenceForwards
|
||||
|
||||
try:
|
||||
from colossalai.kernel.triton.rms_norm import rmsnorm_forward
|
||||
HAS_TRITON_RMSNORM = True
|
||||
except:
|
||||
print("you should install triton from https://github.com/openai/triton")
|
||||
@@ -23,7 +22,6 @@ except:
|
||||
|
||||
|
||||
class ChatGLM2InferPolicy(ChatGLMModelPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -32,45 +30,44 @@ class ChatGLM2InferPolicy(ChatGLMModelPolicy):
|
||||
self.shard_config._infer()
|
||||
|
||||
model_infer_forward = ChatGLM2InferenceForwards.chatglm_model_forward
|
||||
method_replacement = {'forward': model_infer_forward}
|
||||
method_replacement = {"forward": model_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=ChatGLMModel)
|
||||
|
||||
encoder_infer_forward = ChatGLM2InferenceForwards.chatglm_encoder_forward
|
||||
method_replacement = {'forward': encoder_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=GLMTransformer)
|
||||
method_replacement = {"forward": encoder_infer_forward}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=GLMTransformer
|
||||
)
|
||||
|
||||
encoder_layer_infer_forward = ChatGLM2InferenceForwards.chatglm_glmblock_forward
|
||||
method_replacement = {'forward': encoder_layer_infer_forward}
|
||||
method_replacement = {"forward": encoder_layer_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=GLMBlock)
|
||||
|
||||
attn_infer_forward = ChatGLM2InferenceForwards.chatglm_flash_attn_kvcache_forward
|
||||
method_replacement = {'forward': attn_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=SelfAttention)
|
||||
method_replacement = {"forward": attn_infer_forward}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=SelfAttention
|
||||
)
|
||||
|
||||
# for rmsnorm and others, we need to check the shape
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
_init_to_get_rotary(self.model)
|
||||
init_to_get_rotary(self.model)
|
||||
return self.model
|
||||
|
||||
|
||||
class ChatGLM2ForConditionalGenerationInferPolicy(ChatGLM2InferPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
model_infer_forward = ChatGLM2InferenceForwards.chatglm_for_conditional_generation_forward
|
||||
method_replacement = {'forward': partial(model_infer_forward)}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=ChatGLMForConditionalGeneration)
|
||||
method_replacement = {"forward": partial(model_infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=ChatGLMForConditionalGeneration
|
||||
)
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
|
@@ -3,11 +3,12 @@ from functools import partial
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaModel, LlamaRMSNorm
|
||||
|
||||
from colossalai.shardformer.layer import VocabParallelEmbedding1D
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
||||
|
||||
# import colossalai
|
||||
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
||||
|
||||
from ..modeling._utils import init_to_get_rotary
|
||||
from ..modeling.llama import LlamaInferenceForwards, get_llama_vllm_rmsnorm_forward
|
||||
|
||||
try:
|
||||
@@ -50,38 +51,38 @@ class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.o_proj",
|
||||
target_module=RowCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.gate_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.up_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.down_proj",
|
||||
target_module=RowCaiQuantLinear,
|
||||
kwargs={'split_num': 1},
|
||||
)
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
@@ -117,3 +118,7 @@ class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
)
|
||||
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
init_to_get_rotary(self.model.model)
|
||||
return self.model
|
||||
|
Reference in New Issue
Block a user