[inference]fix import bug and delete down useless init (#4830)

* fix import bug and release useless init

* fix

* fix

* fix
This commit is contained in:
Jianghai
2023-10-04 09:18:45 +08:00
committed by GitHub
parent 573f270537
commit 013a4bedf0
9 changed files with 121 additions and 154 deletions

View File

@@ -15,30 +15,6 @@ from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_us
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
inv_freq = 1.0 / (
base ** (torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) / self.config.head_dim_)
)
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
def print_perf_stats(latency_set, config, bs, warmup=3):
# trim warmup queries
latency_set = list(latency_set)
@@ -66,7 +42,6 @@ def run_llama_test(args):
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
init_to_get_rotary(model.model, base=10000)
model = model.half()
model_config = model.config

View File

@@ -1,47 +1,19 @@
import argparse
import logging
import os
import time
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
from torch import distributed as dist
from torch.profiler import ProfilerActivity, profile, record_function
from transformers import AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM
from transformers import LlamaTokenizer
import colossalai
from colossalai.gptq import CaiQuantLinear
from colossalai.gptq.gptq_tp import replace_autogptq_linear
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.inference.tensor_parallel.modeling._utils import init_to_get_rotary
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
def init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) /
self.config.head_dim_))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def print_perf_stats(latency_set, config, bs, warmup=3):
@@ -74,23 +46,23 @@ def run_llama_test(args):
tokenizer.pad_token_id = tokenizer.eos_token_id
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
device=torch.cuda.current_device(),
inject_fused_attention=False)
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False
)
init_to_get_rotary(model.model.model, base=10000)
model_config = model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False,
inference_only=True,
inference_gptq=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
@@ -111,7 +83,7 @@ def run_llama_test(args):
def check_llama(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_llama_test(args)
@@ -123,12 +95,12 @@ def test_llama(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True)
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-q", "--quantized_path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
args = parser.parse_args()