mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
[Gemini] param_tracer_wrapper and test case (#2009)
This commit is contained in:
@@ -4,8 +4,9 @@ from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER # isort:skip
|
||||
from .chunk_memstats_collector import ChunkMemStatsCollector # isort:skip
|
||||
from .static_memstats_collector import StaticMemStatsCollector # isort:skip
|
||||
from .module_tracer_wrapper import MemtracerWrapper # isort:skip
|
||||
from .param_tracer_wrapper import ParamWrapper # isort:skip
|
||||
|
||||
__all__ = [
|
||||
'AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'ChunkMemStatsCollector',
|
||||
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER', 'MemtracerWrapper'
|
||||
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER', 'MemtracerWrapper', 'ParamWrapper'
|
||||
]
|
||||
|
51
colossalai/gemini/memory_tracer/param_tracer_wrapper.py
Normal file
51
colossalai/gemini/memory_tracer/param_tracer_wrapper.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import torch.nn
|
||||
|
||||
from colossalai.tensor.colo_parameter import ColoParameter
|
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||
from colossalai.gemini.ophooks import ParamMemHook
|
||||
from colossalai.nn.parallel.data_parallel import _cast_float
|
||||
|
||||
|
||||
class ParamWrapper():
|
||||
|
||||
def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half):
|
||||
super().__init__()
|
||||
self.module = module
|
||||
self.dtype = dtype
|
||||
self.param_op_hook = ParamMemHook()
|
||||
|
||||
for p in module.parameters():
|
||||
assert isinstance(p, ColoParameter)
|
||||
p.data = p.data.to(dtype)
|
||||
|
||||
self._cast_buffers_to_cuda_dtype()
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.forward(*args, **kwargs)
|
||||
|
||||
def _pre_forward(self):
|
||||
self.param_op_hook.mem_monitor.start()
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype)
|
||||
self.module.zero_grad(set_to_none=True)
|
||||
self._pre_forward()
|
||||
with ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||
outputs = self.module(*args, **kwargs)
|
||||
return outputs
|
||||
|
||||
def backward(self, loss):
|
||||
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||
loss.backward()
|
||||
self._post_backward()
|
||||
|
||||
def _post_backward(self):
|
||||
cuda_volume = self.param_op_hook.mem_monitor.finish()
|
||||
last_model_data = self.param_op_hook._model_data_list[-1]
|
||||
self.param_op_hook._non_model_data_list.append(cuda_volume - last_model_data)
|
||||
|
||||
def _cast_buffers_to_cuda_dtype(self):
|
||||
for buffer in self.module.buffers():
|
||||
buffer.data = buffer.cuda()
|
||||
if torch.is_floating_point(buffer):
|
||||
buffer.data = buffer.data.to(self.dtype)
|
Reference in New Issue
Block a user