Hotfix/Colossalai layers (#92)

* optimized 1d layer apis; reorganized nn.layer modules; fixed tests

* fixed 2.5d runtime issue

* reworked split batch, now called in trainer.schedule.load_batch

Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
アマデウス
2021-12-29 23:32:10 +08:00
committed by GitHub
parent 0fedef4f3c
commit 01a80cd86d
71 changed files with 1033 additions and 773 deletions

View File

@@ -3,9 +3,8 @@ from typing import Callable
import torch
from colossalai import nn as col_nn
from colossalai.context import ParallelMode, seed
from colossalai.nn.layer.utils import CheckpointModule
from colossalai.registry import LAYERS, MODELS
from colossalai.utils import checkpoint
from torch import dtype, nn
__all__ = [
@@ -72,8 +71,7 @@ class ViTEmbedding(nn.Module):
dropout: float,
dtype: dtype = None,
flatten: bool = True,
init_method: str = 'torch',
tensor_parallel: str = None):
init_method: str = 'torch'):
super().__init__()
self.patch_embed = col_nn.PatchEmbedding(img_size,
patch_size,
@@ -81,19 +79,17 @@ class ViTEmbedding(nn.Module):
embedding_dim,
dtype=dtype,
flatten=flatten,
tensor_parallel=tensor_parallel,
**_init_rules[init_method]['embed'])
self.dropout = nn.Dropout(dropout)
self.dropout = col_nn.Dropout(dropout)
def forward(self, x):
x = self.patch_embed(x)
with seed(ParallelMode.TENSOR):
x = self.dropout(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class ViTSelfAttention(nn.Module):
class ViTSelfAttention(CheckpointModule):
def __init__(self,
dim: int,
num_heads: int,
@@ -102,27 +98,17 @@ class ViTSelfAttention(nn.Module):
bias: bool = True,
dtype: dtype = None,
checkpoint: bool = False,
init_method: str = 'torch',
tensor_parallel: str = None):
super().__init__()
init_method: str = 'torch'):
super().__init__(checkpoint)
self.attention_head_size = dim // num_heads
self.checkpoint = checkpoint
self.tensor_parallel = tensor_parallel
self.query_key_value = col_nn.Linear(dim,
3 * dim,
dtype=dtype,
bias=bias,
tensor_parallel='1d_col' if tensor_parallel == '1d' else tensor_parallel,
**_init_rules[init_method]['transformer'])
self.attention_dropout = nn.Dropout(attention_dropout)
self.dense = col_nn.Linear(dim,
dim,
dtype=dtype,
bias=True,
tensor_parallel='1d_row' if tensor_parallel == '1d' else tensor_parallel,
**_init_rules[init_method]['transformer'])
self.dropout = nn.Dropout(dropout)
self.attention_dropout = col_nn.Dropout(attention_dropout)
self.dense = col_nn.Linear(dim, dim, dtype=dtype, bias=True, **_init_rules[init_method]['transformer'])
self.dropout = col_nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=-1)
def _forward(self, x):
@@ -138,8 +124,7 @@ class ViTSelfAttention(nn.Module):
x = torch.matmul(q, k.transpose(-1, -2))
x = x / math.sqrt(self.attention_head_size)
x = self.softmax(x)
with seed(ParallelMode.TENSOR):
x = self.attention_dropout(x)
x = self.attention_dropout(x)
x = torch.matmul(x, v)
x = x.transpose(1, 2)
@@ -147,26 +132,13 @@ class ViTSelfAttention(nn.Module):
x = x.reshape(new_context_layer_shape)
x = self.dense(x)
if self.tensor_parallel == '1d':
x = self.dropout(x)
else:
with seed(ParallelMode.TENSOR):
x = self.dropout(x)
x = self.dropout(x)
return x
def _checkpoint_forward(self, x):
return checkpoint(self._forward, x)
def forward(self, x):
if self.checkpoint:
return self._checkpoint_forward(x)
else:
return self._forward(x)
@LAYERS.register_module
class ViTMLP(nn.Module):
class ViTMLP(CheckpointModule):
def __init__(self,
dim: int,
mlp_ratio: int,
@@ -175,50 +147,30 @@ class ViTMLP(nn.Module):
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False,
init_method: str = 'torch',
tensor_parallel: str = None):
super().__init__()
self.checkpoint = checkpoint
self.tensor_parallel = tensor_parallel
init_method: str = 'torch'):
super().__init__(checkpoint)
self.dense_1 = col_nn.Linear(dim,
mlp_ratio * dim,
dtype=dtype,
bias=bias,
tensor_parallel='1d_col' if tensor_parallel == '1d' else tensor_parallel,
**_init_rules[init_method]['transformer'])
self.activation = activation
self.dropout_1 = col_nn.Dropout(dropout)
self.dense_2 = col_nn.Linear(mlp_ratio * dim,
dim,
dtype=dtype,
bias=bias,
tensor_parallel='1d_row' if tensor_parallel == '1d' else tensor_parallel,
**_init_rules[init_method]['transformer'])
self.dropout = nn.Dropout(dropout)
self.dropout_2 = col_nn.Dropout(dropout)
def _forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
with seed(ParallelMode.TENSOR):
x = self.dropout(x)
x = self.dropout_1(x)
x = self.dense_2(x)
if self.tensor_parallel == '1d':
x = self.dropout(x)
else:
with seed(ParallelMode.TENSOR):
x = self.dropout(x)
x = self.dropout_2(x)
return x
def _checkpoint_forward(self, x):
return checkpoint(self._forward, x)
def forward(self, x):
if self.checkpoint:
return self._checkpoint_forward(x)
else:
return self._forward(x)
@LAYERS.register_module
class ViTHead(nn.Module):
@@ -228,19 +180,14 @@ class ViTHead(nn.Module):
representation_size: int = None,
dtype: dtype = None,
bias: bool = True,
init_method: str = 'torch',
tensor_parallel: str = None):
init_method: str = 'torch'):
super().__init__()
if representation_size:
tensor_parallel_kwargs = {'tensor_parallel': '1d_col' if tensor_parallel == '1d' else tensor_parallel}
if tensor_parallel == '1d':
tensor_parallel_kwargs['gather_output'] = True
self.representation = col_nn.Linear(dim,
representation_size,
bias=bias,
dtype=dtype,
**_init_rules[init_method]['head'],
**tensor_parallel_kwargs)
**_init_rules[init_method]['head'])
else:
self.representation = None
representation_size = dim
@@ -249,7 +196,6 @@ class ViTHead(nn.Module):
num_classes,
dtype=dtype,
bias=bias,
tensor_parallel=tensor_parallel,
**_init_rules[init_method]['head'])
def forward(self, x):
@@ -273,10 +219,9 @@ class ViTBlock(nn.Module):
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False,
init_method: str = 'torch',
tensor_parallel: str = None):
init_method: str = 'torch'):
super().__init__()
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype, tensor_parallel=tensor_parallel)
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype)
self.attn = ViTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
@@ -284,10 +229,9 @@ class ViTBlock(nn.Module):
bias=bias,
dtype=dtype,
checkpoint=checkpoint,
init_method=init_method,
tensor_parallel=tensor_parallel)
init_method=init_method)
self.drop_path = col_nn.DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype, tensor_parallel=tensor_parallel)
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype)
self.mlp = ViTMLP(dim=dim,
mlp_ratio=mlp_ratio,
activation=activation,
@@ -295,8 +239,7 @@ class ViTBlock(nn.Module):
dtype=dtype,
bias=bias,
checkpoint=checkpoint,
init_method=init_method,
tensor_parallel=tensor_parallel)
init_method=init_method)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
@@ -323,20 +266,16 @@ class VisionTransformer(nn.Module):
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False,
init_method: str = 'torch',
tensor_parallel: str = None):
init_method: str = 'torch'):
super().__init__()
embed = ViTEmbedding(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embedding_dim=dim,
dropout=dropout,
dtype=dtype,
init_method=init_method,
tensor_parallel=tensor_parallel,
)
embed = ViTEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embedding_dim=dim,
dropout=dropout,
dtype=dtype,
init_method=init_method)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
@@ -353,26 +292,17 @@ class VisionTransformer(nn.Module):
bias=bias,
checkpoint=checkpoint,
init_method=init_method,
tensor_parallel=tensor_parallel,
) for i in range(depth)
]
norm = col_nn.LayerNorm(
normalized_shape=dim,
eps=1e-6,
dtype=dtype,
tensor_parallel=tensor_parallel,
)
norm = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype)
head = ViTHead(
dim=dim,
num_classes=num_classes,
representation_size=representation_size,
dtype=dtype,
bias=bias,
init_method=init_method,
tensor_parallel=tensor_parallel,
)
head = ViTHead(dim=dim,
num_classes=num_classes,
representation_size=representation_size,
dtype=dtype,
bias=bias,
init_method=init_method)
self.layers = nn.Sequential(
embed,