Hotfix/Colossalai layers (#92)

* optimized 1d layer apis; reorganized nn.layer modules; fixed tests

* fixed 2.5d runtime issue

* reworked split batch, now called in trainer.schedule.load_batch

Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
アマデウス
2021-12-29 23:32:10 +08:00
committed by GitHub
parent 0fedef4f3c
commit 01a80cd86d
71 changed files with 1033 additions and 773 deletions

View File

@@ -1,4 +1,5 @@
import os
import model
from pathlib import Path
BATCH_SIZE = 128

View File

@@ -1,11 +1,12 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import (recv_backward, recv_forward,
recv_tensor_meta, send_backward,
send_backward_recv_forward, send_forward,
@@ -15,8 +16,7 @@ from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from colossalai.utils import get_current_device
from functools import partial
from colossalai.utils import free_port, get_current_device
BATCH_SIZE = 16
SEQ_LENGTH = 64
@@ -123,13 +123,13 @@ def check_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
check_forward_backward(tensor, grad, rank, logger)
def run_check(rank, world_size):
def run_check(rank, world_size, port):
launch(
config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=29932,
port=port,
backend='nccl'
)
logger = get_dist_logger()
@@ -154,7 +154,7 @@ def run_check(rank, world_size):
@pytest.mark.dist
def test_p2p():
world_size = 4
run_func = partial(run_check, world_size=world_size)
run_func = partial(run_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)

View File

@@ -3,25 +3,24 @@ import os.path as osp
import pytest
import torch
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from colossalai.builder.pipeline import build_pipeline_model_from_cfg
from colossalai.core import global_context
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from functools import partial
import model
from colossalai.utils import free_port
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, 'resnet_config.py')
def run_partition(rank, world_size):
def run_partition(rank, world_size, port):
launch(config=CONFIG_PATH,
rank=rank,
world_size=world_size,
host='localhost',
port=29933,
port=port,
backend='nccl'
)
logger = get_dist_logger()
@@ -40,7 +39,7 @@ def run_partition(rank, world_size):
@pytest.mark.dist
def test_partition():
world_size = 4
run_func = partial(run_partition, world_size=world_size)
run_func = partial(run_partition, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)

View File

@@ -1,26 +1,23 @@
# referenced from Megatron and used to testify communication
import colossalai
import os
import os.path as osp
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import model
from colossalai.builder import build_pipeline_model_from_cfg
from colossalai.communication import p2p as p2p_communication
from colossalai.communication.utils import send_tensor_meta, recv_tensor_meta
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import print_rank_0, get_current_device, get_dataloader
from colossalai.engine.schedule import PipelineSchedule
from torchvision.datasets import CIFAR10
from colossalai.initialize import launch
from colossalai.utils import free_port, get_dataloader, print_rank_0
from torchvision import transforms
from pathlib import Path
from functools import partial
from torchvision.datasets import CIFAR10
import model
BATCH_SIZE = 32
NUM_MICRO = 8
@@ -30,12 +27,12 @@ DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, './resnet_config.py')
def run_schedule(rank, world_size):
def run_schedule(rank, world_size, port):
launch(config=CONFIG_PATH,
rank=rank,
world_size=world_size,
host='localhost',
port=29934,
port=port,
backend='nccl')
# build model
@@ -86,7 +83,7 @@ def run_schedule(rank, world_size):
@pytest.mark.dist
def test_pipeline_schedule():
world_size = 4
run_func = partial(run_schedule, world_size=world_size)
run_func = partial(run_schedule, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)

View File

@@ -11,7 +11,7 @@ from colossalai.amp.amp_type import AMP_TYPE
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, get_dataloader
from colossalai.utils import MultiTimer, free_port, get_dataloader
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
@@ -26,8 +26,8 @@ CONFIG = dict(
fp16=dict(mode=AMP_TYPE.TORCH))
def run_trainer_no_pipeline(rank, world_size):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=29930, backend='nccl')
def run_trainer_no_pipeline(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
@@ -88,7 +88,7 @@ def run_trainer_no_pipeline(rank, world_size):
@pytest.mark.dist
def test_trainer_no_pipeline():
world_size = 4
run_func = partial(run_trainer_no_pipeline, world_size=world_size)
run_func = partial(run_trainer_no_pipeline, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)

View File

@@ -12,7 +12,7 @@ from colossalai.core import global_context as gpc
from colossalai.engine.schedule import PipelineSchedule
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, get_dataloader
from colossalai.utils import MultiTimer, free_port, get_dataloader
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
@@ -25,8 +25,8 @@ NUM_EPOCHS = 200
CONFIG = dict(parallel=dict(pipeline=2, ), )
def run_trainer_with_pipeline(rank, world_size):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=29931, backend='nccl')
def run_trainer_with_pipeline(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
@@ -99,7 +99,7 @@ def run_trainer_with_pipeline(rank, world_size):
@pytest.mark.dist
def test_trainer_with_pipeline():
world_size = 4
run_func = partial(run_trainer_with_pipeline, world_size=world_size)
run_func = partial(run_trainer_with_pipeline, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)