remove timer

This commit is contained in:
Runyu Lu 2024-07-30 07:48:39 +00:00
parent 6dcc127c42
commit 01ca9b8133
3 changed files with 23 additions and 150 deletions

View File

@ -1,7 +1,5 @@
import asyncio
import concurrent
import pickle
from contextlib import nullcontext
from itertools import count
from time import sleep
from typing import List, Tuple, Union
@ -17,7 +15,7 @@ from transformers.configuration_utils import PretrainedConfig
from colossalai.inference.batch_bucket import RPCBatchBucket
from colossalai.inference.config import InferenceConfig, InputMetaData
from colossalai.inference.executor.rpc_worker import rpcWorkerService
from colossalai.inference.utils import Timer, find_available_ports
from colossalai.inference.utils import find_available_ports
from colossalai.logging import get_dist_logger
from colossalai.shardformer.policies.base_policy import Policy
@ -126,18 +124,8 @@ class RPCInferenceEngine(InferenceEngine):
self.loop = asyncio.new_event_loop()
asyncio.set_event_loop(self.loop)
self.timer = False
self.t_prepare = Timer("[Timer] prepare the data 2") if self.timer else nullcontext()
self.t_exe = Timer("[Timer] execute rpc worker") if self.timer else nullcontext()
# self.t_sampler = Timer("[Timer] sampler time")
self.logger.info("engine init over ")
def __del__(self):
if self.timer:
del self.t_prepare
del self.t_exe
def _verify_args(self) -> None:
"""Verify the input args"""
if not isinstance(self.inference_config, InferenceConfig):
@ -313,34 +301,6 @@ class RPCInferenceEngine(InferenceEngine):
return ret[0]
def step_(self, input_token_ids, input_meta_data: InputMetaData):
assert len(self.workers) == self.tp_size, "init workers first"
init_tasks = []
with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.workers)) as executor:
for rank, worker in enumerate(self.workers):
if rank == 0:
init_tasks.append(
executor.submit(
worker.execute_model_forward,
pickle.dumps(input_token_ids),
pickle.dumps(input_meta_data.to_rpc_param()),
pickle.dumps(self.generation_config_dict),
)
)
else:
init_tasks.append(
executor.submit(
worker.execute_model_forward,
None,
None,
None,
)
)
concurrent.futures.wait(init_tasks)
results = [future.result() for future in init_tasks]
return results[0]
def step(self) -> List[str]:
with self.t_prepare:
batch = self.request_handler.schedule()
@ -350,8 +310,6 @@ class RPCInferenceEngine(InferenceEngine):
with self.t_exe:
# TODO: padding_id is used for generating attn_mask and will be removed if nopad version is supported.
next_tokens = self.loop.run_until_complete(self.step_async(input_token_ids, input_meta_data))
# with self.t_exe:
# next_tokens = self.step_(input_token_ids, input_meta_data)
# update the request_handler
self.request_handler.append_next_tokens(next_tokens)
@ -360,7 +318,7 @@ class RPCInferenceEngine(InferenceEngine):
def kill_workers(self):
"""
I don't find a good way to implicit invoke self.kill_workers
NOTE(@lry89757) Don't find a good way to implicit invoke self.kill_workers
"""
assert len(self.workers) != 0
for proc in self.worker_processes:

View File

@ -55,13 +55,6 @@ class rpcWorkerService(rpyc.Service):
colossalai.launch(rank=rank, world_size=world_size, port=master_port, host=master_address)
self.rank = rank
# profiling only, remove later
self.timing = False
self.t_prepare = Timer("[Timer] prepare the data 1") if self.timing else nullcontext()
self.t_exe = Timer("[Timer] execute the model forward") if self.timing else nullcontext()
self.t_sampler = Timer("[Timer] sampler time") if self.timing else nullcontext()
self.profiling = False
self.profiler = (
torch.profiler.profile(
@ -133,12 +126,11 @@ class rpcWorkerService(rpyc.Service):
):
with self.profiler:
# prepare the data for model forward
with self.t_prepare:
input_token_ids, input_meta_data, generation_config = self._broadcast_param_to_all_workers(
input_token_ids_param=input_token_ids_param,
input_meta_data_param=input_meta_data_param,
generation_config_param=generation_config_param,
)
input_token_ids, input_meta_data, generation_config = self._broadcast_param_to_all_workers(
input_token_ids_param=input_token_ids_param,
input_meta_data_param=input_meta_data_param,
generation_config_param=generation_config_param,
)
if input_meta_data.is_prompts:
n_tokens = input_meta_data.sequence_lengths.sum().item()
@ -146,14 +138,13 @@ class rpcWorkerService(rpyc.Service):
n_tokens = input_meta_data.batch_size
# execute the model
with self.t_exe:
logits = self.model(
input_token_ids,
self.output_tensor[:n_tokens],
input_meta_data,
self.k_cache,
self.v_cache,
)
logits = self.model(
input_token_ids,
self.output_tensor[:n_tokens],
input_meta_data,
self.k_cache,
self.v_cache,
)
if self.profiling:
self.profiler.step()
@ -161,16 +152,15 @@ class rpcWorkerService(rpyc.Service):
self.record()
if self.rank == 0:
with self.t_sampler:
# sampler
if self.inference_config.pad_input:
logits = logits[:, -1, :]
next_tokens = search_tokens(
generation_config,
logits,
input_meta_data.is_prompts,
input_meta_data.batch_token_ids,
)
# sampler
if self.inference_config.pad_input:
logits = logits[:, -1, :]
next_tokens = search_tokens(
generation_config,
logits,
input_meta_data.is_prompts,
input_meta_data.batch_token_ids,
)
# return the tokens generated to scheduler
# only rank 0 need to pass the data back
@ -432,14 +422,6 @@ class rpcWorkerService(rpyc.Service):
return data.item()
def __del__(self):
"""
profiling only, remove later
"""
del self.t_prepare
del self.t_exe
del self.t_sampler
def record(self):
if self.profiling:
file = "/home/lurunyu/projects/ColossalAI/test_trace_rpc.json"

View File

@ -194,70 +194,3 @@ def get_model_type(model_or_path: Union[nn.Module, str, DiffusionPipeline]):
"""
else:
return ModelType.UNKNOWN
"""
below just for profiling temporarily, will removed before merge
"""
import time
from contextlib import asynccontextmanager, contextmanager
@contextmanager
def timer(name=""):
# (@lry89757) will remove later
start_time = time.time()
try:
yield
finally:
end_time = time.time()
elapsed_time = end_time - start_time
print(f"{name} took {elapsed_time:.6f} seconds")
class Timer:
# (@lry89757) will remove later
def __init__(self, name=""):
print(f"init timer, {name}")
self.name = name
self.times = []
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
end_time = time.time()
elapsed_time = end_time - self.start_time
self.times.append(elapsed_time)
# print(f"{self.name} took {elapsed_time:.6f} seconds")
# self.print_info()
def print_info(self):
average_prefill_time = self.times[0]
print(f"{self.name} prefill average time: {average_prefill_time:.6f} seconds")
if len(self.times) > 1:
average_decoding_time = sum(self.times[1:]) / len(self.times[1:])
print(f"{self.name} decoding average time: {average_decoding_time:.6f} seconds")
def __del__(self):
if self.times:
average_prefill_time = self.times[0]
print(f"{self.name} prefill average time: {average_prefill_time:.6f} seconds")
if len(self.times) > 1:
average_decoding_time = sum(self.times[1:]) / len(self.times[1:])
print(f"{self.name} decoding average time: {average_decoding_time:.6f} seconds")
else:
print(f"{self.name} no timings recorded")
@asynccontextmanager
async def async_timer(name=""):
# (@lry89757) will remove later
start_time = time.time()
try:
yield
finally:
end_time = time.time()
elapsed_time = end_time - start_time
print(f"{name} took {elapsed_time:.6f} seconds")