[dependency] removed torchvision (#833)

* [dependency] removed torchvision

* fixed transforms
This commit is contained in:
Frank Lee 2022-04-22 15:24:35 +08:00 committed by GitHub
parent cb5a4778e1
commit 01e9f834f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 30 additions and 53 deletions

View File

@ -1,22 +1,19 @@
import torch.distributed.optim as dist_optim import torch.distributed.optim as dist_optim
import torch.nn as nn import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torchvision.models as tv_models
import torchvision.datasets as tv_datasets
from torchvision import transforms
from .registry import Registry from .registry import Registry
LAYERS = Registry("layers", third_party_library=[nn]) LAYERS = Registry("layers", third_party_library=[nn])
LOSSES = Registry("losses") LOSSES = Registry("losses")
MODELS = Registry("models", third_party_library=[tv_models]) MODELS = Registry("models")
OPTIMIZERS = Registry("optimizers", third_party_library=[optim, dist_optim]) OPTIMIZERS = Registry("optimizers", third_party_library=[optim, dist_optim])
DATASETS = Registry("datasets", third_party_library=[tv_datasets]) DATASETS = Registry("datasets")
DIST_GROUP_INITIALIZER = Registry("dist_group_initializer") DIST_GROUP_INITIALIZER = Registry("dist_group_initializer")
GRADIENT_HANDLER = Registry("gradient_handler") GRADIENT_HANDLER = Registry("gradient_handler")
LOSSES = Registry("losses", third_party_library=[nn]) LOSSES = Registry("losses", third_party_library=[nn])
HOOKS = Registry("hooks") HOOKS = Registry("hooks")
TRANSFORMS = Registry("transforms", third_party_library=[transforms]) TRANSFORMS = Registry("transforms")
DATA_SAMPLERS = Registry("data_samplers") DATA_SAMPLERS = Registry("data_samplers")
LR_SCHEDULERS = Registry("lr_schedulers") LR_SCHEDULERS = Registry("lr_schedulers")
SCHEDULE = Registry("schedules") SCHEDULE = Registry("schedules")

View File

@ -1,5 +1,3 @@
pytest pytest
rpyc torchvision
matplotlib
tensorboard
transformers transformers

View File

@ -1,9 +1,7 @@
torch>=1.8 torch>=1.8
torchvision>=0.9
numpy numpy
tqdm tqdm
psutil psutil
tensorboard
packaging packaging
pre-commit pre-commit
rich rich

View File

@ -10,23 +10,10 @@ from torch.utils.data import DataLoader
from colossalai.builder import build_dataset, build_transform from colossalai.builder import build_dataset, build_transform
from colossalai.context import Config from colossalai.context import Config
from torchvision.transforms import ToTensor
TRAIN_DATA = dict( TRAIN_DATA = dict(dataset=dict(type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True),
dataset=dict( dataloader=dict(batch_size=4, shuffle=True, num_workers=2))
type='CIFAR10',
root=Path(os.environ['DATA']),
train=True,
download=True
),
dataloader=dict(batch_size=4, shuffle=True, num_workers=2),
transform_pipeline=[
dict(type='ToTensor'),
dict(type='Normalize',
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5)
)
]
)
@pytest.mark.cpu @pytest.mark.cpu
@ -37,7 +24,7 @@ def test_cifar10_dataset():
transform_cfg = config.transform_pipeline transform_cfg = config.transform_pipeline
# build transform # build transform
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg] transform_pipeline = [ToTensor()]
transform_pipeline = transforms.Compose(transform_pipeline) transform_pipeline = transforms.Compose(transform_pipeline)
dataset_cfg['transform'] = transform_pipeline dataset_cfg['transform'] = transform_pipeline

View File

@ -12,26 +12,25 @@ import torch.multiprocessing as mp
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
import colossalai import colossalai
from colossalai.builder import build_dataset, build_transform from colossalai.builder import build_dataset
from torchvision import transforms from torchvision import transforms
from colossalai.context import ParallelMode, Config from colossalai.context import ParallelMode, Config
from colossalai.core import global_context as gpc from colossalai.core import global_context as gpc
from colossalai.utils import get_dataloader, free_port from colossalai.utils import get_dataloader, free_port
from colossalai.testing import rerun_if_address_is_in_use from colossalai.testing import rerun_if_address_is_in_use
from torchvision.transforms import ToTensor
CONFIG = Config( CONFIG = Config(
dict( dict(
train_data=dict(dataset=dict( train_data=dict(
dataset=dict(
type='CIFAR10', type='CIFAR10',
root=Path(os.environ['DATA']), root=Path(os.environ['DATA']),
train=True, train=True,
download=True, download=True,
), ),
dataloader=dict(batch_size=8,), dataloader=dict(batch_size=8,),
transform_pipeline=[ ),
dict(type='ToTensor'),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]),
parallel=dict( parallel=dict(
pipeline=dict(size=1), pipeline=dict(size=1),
tensor=dict(size=1, mode=None), tensor=dict(size=1, mode=None),
@ -45,7 +44,7 @@ def run_data_sampler(rank, world_size, port):
colossalai.launch(**dist_args) colossalai.launch(**dist_args)
print('finished initialization') print('finished initialization')
transform_pipeline = [build_transform(cfg) for cfg in gpc.config.train_data.transform_pipeline] transform_pipeline = [ToTensor()]
transform_pipeline = transforms.Compose(transform_pipeline) transform_pipeline = transforms.Compose(transform_pipeline)
gpc.config.train_data.dataset['transform'] = transform_pipeline gpc.config.train_data.dataset['transform'] = transform_pipeline
dataset = build_dataset(gpc.config.train_data.dataset) dataset = build_dataset(gpc.config.train_data.dataset)

View File

@ -13,26 +13,24 @@ from torchvision import transforms
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
import colossalai import colossalai
from colossalai.builder import build_dataset, build_transform from colossalai.builder import build_dataset
from colossalai.context import ParallelMode, Config from colossalai.context import ParallelMode, Config
from colossalai.core import global_context as gpc from colossalai.core import global_context as gpc
from colossalai.utils import free_port from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use from colossalai.testing import rerun_if_address_is_in_use
from torchvision import transforms
CONFIG = Config( CONFIG = Config(
dict( dict(
train_data=dict(dataset=dict( train_data=dict(
dataset=dict(
type='CIFAR10', type='CIFAR10',
root=Path(os.environ['DATA']), root=Path(os.environ['DATA']),
train=True, train=True,
download=True, download=True,
), ),
dataloader=dict(num_workers=2, batch_size=2, shuffle=True), dataloader=dict(num_workers=2, batch_size=2, shuffle=True),
transform_pipeline=[ ),
dict(type='ToTensor'),
dict(type='RandomCrop', size=32),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]),
parallel=dict( parallel=dict(
pipeline=dict(size=1), pipeline=dict(size=1),
tensor=dict(size=1, mode=None), tensor=dict(size=1, mode=None),
@ -50,7 +48,7 @@ def run_data_sampler(rank, world_size, port):
transform_cfg = gpc.config.train_data.transform_pipeline transform_cfg = gpc.config.train_data.transform_pipeline
# build transform # build transform
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg] transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32)]
transform_pipeline = transforms.Compose(transform_pipeline) transform_pipeline = transforms.Compose(transform_pipeline)
dataset_cfg['transform'] = transform_pipeline dataset_cfg['transform'] = transform_pipeline