mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
add context_attention_unpadded
This commit is contained in:
committed by
FrankLeeeee
parent
07b5283b6a
commit
02c1bf8b2a
@@ -5,6 +5,7 @@ import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
|
||||
|
||||
from colossalai.inference.struct import BatchInfo
|
||||
from colossalai.kernel.triton import context_attention_unpadded
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
@@ -53,7 +54,6 @@ def llama_causal_lm_forward(
|
||||
v_caches=v_caches,
|
||||
)
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@@ -157,15 +157,17 @@ def llama_attn_forward(
|
||||
key_states = key_states.view(-1, self.num_heads, self.head_dim)
|
||||
value_states = value_states.view(-1, self.num_heads, self.head_dim)
|
||||
|
||||
# TODO: The code below will be uncommented after the development of attention-related kernel is completed.
|
||||
# memcpy_to_block(key_states, value_states, k_cache, v_cache, block_tables, block_size, sequence_lengths)
|
||||
# if is_prompts:
|
||||
# attn_output = context_attention_unpadded(query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
|
||||
# else:
|
||||
# attn_output = torch.empty(bsz, self.num_heads, self.head_dim)
|
||||
# decoding_attention(query_states, k_cache, v_cache, block_tables, sequence_lengths, attn_output, block_tables.shape[1], block_size)
|
||||
_, _, _, block_size = k_cache.shape
|
||||
|
||||
# NOTE: context_attention_unpadded is unsed for testing accuracy and we can only use aligned inputs.
|
||||
# The code below will be uncommented after the development of attention-related kernel is completed.
|
||||
if is_prompts:
|
||||
attn_output = context_attention_unpadded(
|
||||
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size
|
||||
)
|
||||
# else:
|
||||
# attn_output = context_attention_unpadded(query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
|
||||
|
||||
attn_output = query_states
|
||||
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
Reference in New Issue
Block a user