add context_attention_unpadded

This commit is contained in:
yuehuayingxueluo
2024-01-03 18:50:26 +08:00
committed by FrankLeeeee
parent 07b5283b6a
commit 02c1bf8b2a
5 changed files with 37 additions and 29 deletions

33
tests/test_infer/test_inference_engine.py Executable file → Normal file
View File

@@ -1,4 +1,9 @@
import random
import numpy as np
import pytest
import torch
import transformers
from transformers import AutoTokenizer, GenerationConfig
import colossalai
@@ -7,7 +12,15 @@ from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import spawn
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def check_inference_engine(test_cai=False):
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
@@ -16,8 +29,8 @@ def check_inference_engine(test_cai=False):
)
inputs = [
"介绍一下今天的北京",
"介绍一下武汉",
"介绍一下北京,",
"介绍一下武汉,",
]
if test_cai:
@@ -25,28 +38,26 @@ def check_inference_engine(test_cai=False):
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(top_k=2, top_p=0.8, do_sample=True)
generation_config = GenerationConfig(do_sample=False)
outputs = inference_engine.generate(generation_config)
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
generation_config = GenerationConfig(
top_k=2, top_p=0.8, do_sample=True, pad_token_id=tokenizer.pad_token_id, max_new_tokens=1
)
generation_config = GenerationConfig(do_sample=False, pad_token_id=tokenizer.pad_token_id, max_new_tokens=1)
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
check_inference_engine(True)
check_inference_engine(False)
cai_outputs = check_inference_engine(True)
transformer_outputs = check_inference_engine(False)
# TODO: There are some bugs in sampler.
# for s1, s2 in zip(cai_outputs, transformer_outputs):
# assert s1 == s2
for s1, s2 in zip(cai_outputs, transformer_outputs):
assert s1 == s2
@pytest.mark.dist