Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>
This commit is contained in:
char-1ee
2024-06-03 01:51:21 +00:00
parent 73e88a5553
commit 04386d9eff
9 changed files with 439 additions and 145 deletions

View File

@@ -8,6 +8,7 @@ import torch.nn as nn
from torch.distributed import ProcessGroup
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.inference.utils import get_alibi_slopes
from colossalai.inference.modeling.models.nopadding_llama import NopadLlamaMLP
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import (
@@ -47,22 +48,6 @@ inference_ops = InferenceOpsLoader().load()
logger = get_dist_logger(__name__)
# alibi slopes calculation adapted from https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/bloom/modeling_bloom.py#L57
def get_alibi_slopes(num_heads: int, device: torch.device) -> torch.Tensor:
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, device=device)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32, device=device)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, device=device
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32, device=device)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
def baichuan_rmsnorm_forward(
self,
hidden_states: torch.Tensor,

View File

@@ -18,6 +18,9 @@ from transformers.models.llama.modeling_llama import (
from colossalai.inference.config import InputMetaData
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.inference.modeling.backends.attention_backend import get_attention_backend, AttentionMetaData
from colossalai.inference.modeling.backends.attention_context import get_attention_context
from colossalai.inference.utils import can_use_flash_attn2
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import (
context_attention_unpadded,
@@ -36,14 +39,6 @@ inference_ops = InferenceOpsLoader().load()
logger = get_dist_logger(__name__)
try:
from flash_attn import flash_attn_varlen_func
use_flash_attn2 = True
except ImportError:
use_flash_attn2 = False
logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.")
def llama_causal_lm_forward(
self: LlamaForCausalLM,
@@ -126,7 +121,7 @@ def llama_model_forward(
cos_sin = (self._cos_cached[rotary_indexes], self._sin_cached[rotary_indexes])
elif use_cuda_kernel:
if inputmetadata.dtype != torch.float32 and use_flash_attn2:
if inputmetadata.dtype != torch.float32 and can_use_flash_attn2():
cu_seqlens = F.pad(torch.cumsum(sequence_lengths, dim=0, dtype=torch.torch.int32), (1, 0))
hidden_dim = self._cos_cached.size(-1)
@@ -532,112 +527,54 @@ class NopadLlamaAttention(LlamaAttention, ParallelModule):
)
block_size = k_cache.size(-2)
if is_prompts:
if not is_verifier and use_cuda_kernel and query_states.dtype != torch.float32 and use_flash_attn2:
# flash attn 2 currently only supports FP16/BF16.
inference_ops.rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1], high_precision)
inference_ops.context_kv_cache_memcpy(
key_states, value_states, k_cache, v_cache, sequence_lengths, cu_seqlens, block_tables, kv_seq_len
)
attn_output = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=kv_seq_len,
max_seqlen_k=kv_seq_len,
dropout_p=0.0,
softmax_scale=sm_scale,
causal=True,
)
attn_output = attn_output.view(token_nums, -1)
else:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
attn_output = context_attention_unpadded(
q=query_states,
k=key_states,
v=value_states,
k_cache=k_cache,
v_cache=v_cache,
context_lengths=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
output=output_tensor,
max_seq_len=kv_seq_len,
sm_scale=sm_scale,
use_new_kcache_layout=use_cuda_kernel,
)
else:
attn_metadata = AttentionMetaData(
query_states=query_states,
key_states=key_states,
value_states=value_states,
k_cache=k_cache,
v_cache=v_cache,
block_tables=block_tables,
block_size=block_size,
kv_seq_len=kv_seq_len,
sequence_lengths=sequence_lengths,
sm_scale=sm_scale,
alibi_slopes=None,
cu_seqlens=cu_seqlens,
output_tensor=output_tensor,
use_spec_dec=is_verifier,
use_alibi_attn=False,
)
attention_backend = get_attention_backend(use_spec_dec=is_verifier, use_cuda_kernel=use_cuda_kernel, dtype=query_states.dtype)
attention_context = get_attention_context(use_spec_dec=is_verifier, use_cuda_kernel=use_cuda_kernel, dtype=query_states.dtype)
if is_prompts: # prefilling stage
attention_context.prefill(
attn_metadata,
cos=cos_sin[0],
sin=cos_sin[1],
high_precision=high_precision,
)
attn_output = attention_backend.prefill(
attn_metadata,
token_nums=token_nums,
)
else: # decoding stage
q_len = tokens_to_verify + 1 if is_verifier else 1
if use_cuda_kernel:
inference_ops.rotary_embedding_and_cache_copy(
query_states,
key_states,
value_states,
cos_sin[0],
cos_sin[1],
k_cache,
v_cache,
sequence_lengths,
block_tables,
high_precision,
)
inference_ops.flash_decoding_attention(
output_tensor,
query_states,
k_cache,
v_cache,
sequence_lengths,
block_tables,
block_size,
kv_seq_len,
fd_inter_tensor.mid_output,
fd_inter_tensor.exp_sums,
fd_inter_tensor.max_logits,
None,
sm_scale,
)
attn_output = output_tensor
else:
if is_verifier:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
copy_k_to_blocked_cache(
key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables, n=q_len
)
copy_k_to_blocked_cache(
value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables, n=q_len
)
else:
decoding_fused_rotary_embedding(
query_states,
key_states,
value_states,
cos_sin[0],
cos_sin[1],
k_cache,
v_cache,
block_tables,
sequence_lengths,
)
attn_output = flash_decoding_attention(
q=query_states,
k_cache=k_cache,
v_cache=v_cache,
kv_seq_len=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
max_seq_len_in_batch=kv_seq_len,
output=output_tensor,
mid_output=fd_inter_tensor.mid_output,
mid_output_lse=fd_inter_tensor.mid_output_lse,
sm_scale=sm_scale,
kv_group_num=self.num_key_value_groups,
q_len=q_len,
)
attention_context.decode(
attn_metadata,
cos=cos_sin[0],
sin=cos_sin[1],
q_len=q_len,
)
attn_output = attention_backend.decode(
attn_metadata,
fd_inter_tensor=fd_inter_tensor,
num_key_value_groups=self.num_key_value_groups,
q_len=q_len,
)
attn_output = attn_output.view(-1, self.hidden_size)
attn_output = self.o_proj(attn_output)
@@ -695,3 +632,4 @@ class NopadLlamaAttention(LlamaAttention, ParallelModule):
def extra_repr(self) -> str:
return f"qkv_weight_proj MergedLinear1D_Col: in_features={self.qkv_weight.shape[1]}x3, out_features={self.qkv_weight.shape[2]}, bias=False"