Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>
This commit is contained in:
char-1ee
2024-06-03 01:51:21 +00:00
parent 73e88a5553
commit 04386d9eff
9 changed files with 439 additions and 145 deletions

View File

@@ -3,6 +3,7 @@ Utils for model inference
"""
import os
import re
import math
from pathlib import Path
from typing import Optional, Tuple
@@ -10,6 +11,9 @@ import torch
from torch import nn
from colossalai.testing import free_port
from colossalai.logging import get_dist_logger
logger = get_dist_logger(__name__)
def init_to_get_rotary(self, base=10000, use_elem=False):
@@ -113,3 +117,45 @@ def find_available_ports(num: int):
print(f"An OS error occurred: {e}")
raise RuntimeError("Error finding available ports")
return free_ports
def get_alibi_slopes(num_heads: int, device: torch.device) -> torch.Tensor:
"""
Alibi slopes calculation adapted from https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/bloom/modeling_bloom.py#L57
Args:
num_heads (int): The number of attention heads.
device (torch.device): The device to use.
Returns:
torch.Tensor: The Alibi slopes.
"""
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, device=device)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32, device=device)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, device=device
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32, device=device)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
def can_use_flash_attn2(dtype: torch.dtype) -> bool:
"""
Check flash attention2 availability.
"""
if dtype not in (torch.float16, torch.bfloat16):
logger.warning(f"Flash attn2 currently only supports float16 and bfloat16.")
return False
try:
from flash_attn import __version__
logger.info(f"flash_attn2 version {__version__}.")
return True
except ImportError:
logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.")
return False