mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 23:18:36 +00:00
[checkpoint]support generalized scheduler (#1222)
This commit is contained in:
@@ -2,10 +2,20 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.distributed as dist
|
||||
import collections
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||||
import inspect
|
||||
from colossalai.utils.model.colo_init_context import colo_state_dict
|
||||
|
||||
|
||||
def filter_dict(dict_to_filter, thing_with_kwargs):
|
||||
sig = inspect.signature(thing_with_kwargs)
|
||||
filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD]
|
||||
filter_dict = {}
|
||||
for filter_key in filter_keys:
|
||||
if filter_key in dict_to_filter:
|
||||
filter_dict[filter_key] = dict_to_filter[filter_key]
|
||||
return filter_dict
|
||||
|
||||
|
||||
def save_checkpoint(dire: str,
|
||||
epoch: int,
|
||||
model: torch.nn.Module,
|
||||
@@ -25,9 +35,7 @@ def save_checkpoint(dire: str,
|
||||
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
|
||||
if dist.get_rank() == 0:
|
||||
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
||||
lr_scheduler_dict = lr_scheduler.state_dict()
|
||||
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
||||
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler_dict}
|
||||
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict()}
|
||||
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
||||
|
||||
|
||||
@@ -55,8 +63,13 @@ def load_checkpoint(dire,
|
||||
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
|
||||
optimizer.load_state_dict(optim_state['optimizer'])
|
||||
lr_scheduler_dict = optim_state['lr_scheduler']
|
||||
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
||||
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(optimizer, after_scheduler_dict['T_max'],
|
||||
after_scheduler_dict['eta_min'],
|
||||
after_scheduler_dict['last_epoch'])
|
||||
if 'after_scheduler_type' in lr_scheduler_dict:
|
||||
after_scheduler_type = lr_scheduler_dict.pop('after_scheduler_type')
|
||||
after_scheduler_dict = lr_scheduler_dict.pop('after_scheduler_dict')
|
||||
reload_scheduler = getattr(torch.optim.lr_scheduler, after_scheduler_type)
|
||||
filtered_dict = filter_dict(after_scheduler_dict, reload_scheduler)
|
||||
lr_scheduler_dict['after_scheduler'] = reload_scheduler(
|
||||
optimizer,
|
||||
**filtered_dict,
|
||||
)
|
||||
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
||||
|
Reference in New Issue
Block a user