mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 09:38:05 +00:00
[checkpoint]support generalized scheduler (#1222)
This commit is contained in:
@@ -8,6 +8,8 @@ from functools import partial
|
||||
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||||
from torch.optim.lr_scheduler import MultiplicativeLR
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
@@ -102,10 +104,14 @@ def remove(path):
|
||||
raise ValueError("file {} is not a file or dir.".format(path))
|
||||
|
||||
|
||||
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
||||
def run_checkpoint(init_spec_func, use_ddp, test_epoch, test_scheduler, pg):
|
||||
num_epoch = 5
|
||||
warmup_epoch = 2
|
||||
|
||||
batch = 3
|
||||
feature = 32
|
||||
category = 16
|
||||
|
||||
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = MLP(feature, category)
|
||||
@@ -129,14 +135,25 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
||||
weight_decay=0)
|
||||
optimizer_ref = torch.optim.Adam(model_ref.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
||||
|
||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=20, warmup_steps=5)
|
||||
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload, total_steps=20, warmup_steps=5)
|
||||
lr_scheduler_ref = CosineAnnealingWarmupLR(optimizer=optimizer_ref, total_steps=20, warmup_steps=5)
|
||||
if test_scheduler == 'colossalai_cosine_warmup':
|
||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=num_epoch, warmup_steps=warmup_epoch)
|
||||
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload,
|
||||
total_steps=num_epoch,
|
||||
warmup_steps=warmup_epoch)
|
||||
|
||||
elif test_scheduler == 'torch_cosine':
|
||||
lr_scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=num_epoch)
|
||||
lr_scheduler_reload = CosineAnnealingLR(optimizer=optimizer_reload, T_max=num_epoch)
|
||||
|
||||
elif test_scheduler == 'torch_lambda':
|
||||
lr_lambda = lambda epoch: 0.95
|
||||
lr_scheduler = MultiplicativeLR(optimizer=optimizer, lr_lambda=lr_lambda)
|
||||
lr_scheduler_reload = MultiplicativeLR(optimizer=optimizer_reload, lr_lambda=lr_lambda)
|
||||
|
||||
init_spec_func(model, pg)
|
||||
init_spec_func(model_ref, pg)
|
||||
|
||||
for epoch in range(0, 20):
|
||||
for epoch in range(0, num_epoch):
|
||||
if epoch <= test_epoch:
|
||||
for i, image_dict in enumerate(train_dataloader):
|
||||
if use_ddp:
|
||||
@@ -155,7 +172,6 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
||||
for ref_p, p in zip(model_ref.parameters(), model.parameters()):
|
||||
ref_p.data.copy_(p)
|
||||
optimizer_ref = copy.deepcopy(optimizer)
|
||||
lr_scheduler_ref = copy.deepcopy(lr_scheduler)
|
||||
|
||||
check_param_equal(model, model_ref)
|
||||
save_checkpoint('./checkpoint', epoch, model, optimizer, lr_scheduler)
|
||||
@@ -189,28 +205,34 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
||||
check_param_equal(model_ref, model_reload)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port, use_ddp, test_epoch):
|
||||
def run_dist(rank, world_size, port, use_ddp, test_epoch, test_scheduler):
|
||||
if use_ddp and world_size == 1:
|
||||
return
|
||||
tp_world_size = world_size // 2 if use_ddp else world_size
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
pg = ProcessGroup(tp_degree=world_size)
|
||||
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, pg)
|
||||
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, test_scheduler, pg)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [4])
|
||||
@pytest.mark.parametrize('use_ddp', [True])
|
||||
@pytest.mark.parametrize('test_epoch', [1, 2, 3])
|
||||
@pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_checkpoint(world_size, use_ddp, test_epoch):
|
||||
def test_checkpoint(world_size, use_ddp, test_epoch, test_scheduler):
|
||||
if not os.path.isdir('./checkpoint'):
|
||||
os.mkdir('./checkpoint')
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp, test_epoch=test_epoch)
|
||||
run_func = partial(run_dist,
|
||||
world_size=world_size,
|
||||
port=free_port(),
|
||||
use_ddp=use_ddp,
|
||||
test_epoch=test_epoch,
|
||||
test_scheduler=test_scheduler)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
remove('./checkpoint')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_checkpoint(4, True, 1)
|
||||
test_checkpoint(4, True, 1, 1)
|
||||
|
Reference in New Issue
Block a user