mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-27 15:57:16 +00:00
[checkpoint]support generalized scheduler (#1222)
This commit is contained in:
parent
a98319f023
commit
04537bf83e
@ -2,6 +2,7 @@ from torch.optim.lr_scheduler import _LRScheduler
|
|||||||
|
|
||||||
|
|
||||||
class _enable_get_lr_call:
|
class _enable_get_lr_call:
|
||||||
|
|
||||||
def __init__(self, o):
|
def __init__(self, o):
|
||||||
self.o = o
|
self.o = o
|
||||||
|
|
||||||
@ -33,6 +34,16 @@ class DelayerScheduler(_LRScheduler):
|
|||||||
self.finished = False
|
self.finished = False
|
||||||
super().__init__(optimizer, last_epoch)
|
super().__init__(optimizer, last_epoch)
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
||||||
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
||||||
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
||||||
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
||||||
|
del state_dict['after_scheduler']
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
return state_dict
|
||||||
|
|
||||||
def get_lr(self):
|
def get_lr(self):
|
||||||
if self.last_epoch >= self.delay_epochs:
|
if self.last_epoch >= self.delay_epochs:
|
||||||
if not self.finished:
|
if not self.finished:
|
||||||
@ -73,6 +84,16 @@ class WarmupScheduler(_LRScheduler):
|
|||||||
self.finished = False
|
self.finished = False
|
||||||
super().__init__(optimizer, last_epoch)
|
super().__init__(optimizer, last_epoch)
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
||||||
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
||||||
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
||||||
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
||||||
|
del state_dict['after_scheduler']
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
return state_dict
|
||||||
|
|
||||||
def get_lr(self):
|
def get_lr(self):
|
||||||
if self.last_epoch >= self.warmup_epochs:
|
if self.last_epoch >= self.warmup_epochs:
|
||||||
if not self.finished:
|
if not self.finished:
|
||||||
@ -118,6 +139,16 @@ class WarmupDelayerScheduler(_LRScheduler):
|
|||||||
self.finished = False
|
self.finished = False
|
||||||
super().__init__(optimizer, last_epoch)
|
super().__init__(optimizer, last_epoch)
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
||||||
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
||||||
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
||||||
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
||||||
|
del state_dict['after_scheduler']
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
return state_dict
|
||||||
|
|
||||||
def get_lr(self):
|
def get_lr(self):
|
||||||
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
|
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
|
||||||
if not self.finished:
|
if not self.finished:
|
||||||
|
@ -29,7 +29,6 @@ def _scan_for_pg_from_args(args, kwargs) -> ProcessGroup:
|
|||||||
pg = _scan_for_pg_from_args(elem, {})
|
pg = _scan_for_pg_from_args(elem, {})
|
||||||
if pg is not None:
|
if pg is not None:
|
||||||
return pg
|
return pg
|
||||||
print(type(elem), elem, isinstance(elem, (list, tuple)))
|
|
||||||
for k, v in kwargs:
|
for k, v in kwargs:
|
||||||
if isinstance(v, ColoTensor):
|
if isinstance(v, ColoTensor):
|
||||||
pg = v.get_process_group()
|
pg = v.get_process_group()
|
||||||
|
@ -2,10 +2,20 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import collections
|
import collections
|
||||||
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
import inspect
|
||||||
from colossalai.utils.model.colo_init_context import colo_state_dict
|
from colossalai.utils.model.colo_init_context import colo_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
def filter_dict(dict_to_filter, thing_with_kwargs):
|
||||||
|
sig = inspect.signature(thing_with_kwargs)
|
||||||
|
filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD]
|
||||||
|
filter_dict = {}
|
||||||
|
for filter_key in filter_keys:
|
||||||
|
if filter_key in dict_to_filter:
|
||||||
|
filter_dict[filter_key] = dict_to_filter[filter_key]
|
||||||
|
return filter_dict
|
||||||
|
|
||||||
|
|
||||||
def save_checkpoint(dire: str,
|
def save_checkpoint(dire: str,
|
||||||
epoch: int,
|
epoch: int,
|
||||||
model: torch.nn.Module,
|
model: torch.nn.Module,
|
||||||
@ -25,9 +35,7 @@ def save_checkpoint(dire: str,
|
|||||||
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
|
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
|
||||||
if dist.get_rank() == 0:
|
if dist.get_rank() == 0:
|
||||||
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
||||||
lr_scheduler_dict = lr_scheduler.state_dict()
|
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict()}
|
||||||
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
|
||||||
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler_dict}
|
|
||||||
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
||||||
|
|
||||||
|
|
||||||
@ -55,8 +63,13 @@ def load_checkpoint(dire,
|
|||||||
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
|
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
|
||||||
optimizer.load_state_dict(optim_state['optimizer'])
|
optimizer.load_state_dict(optim_state['optimizer'])
|
||||||
lr_scheduler_dict = optim_state['lr_scheduler']
|
lr_scheduler_dict = optim_state['lr_scheduler']
|
||||||
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
if 'after_scheduler_type' in lr_scheduler_dict:
|
||||||
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(optimizer, after_scheduler_dict['T_max'],
|
after_scheduler_type = lr_scheduler_dict.pop('after_scheduler_type')
|
||||||
after_scheduler_dict['eta_min'],
|
after_scheduler_dict = lr_scheduler_dict.pop('after_scheduler_dict')
|
||||||
after_scheduler_dict['last_epoch'])
|
reload_scheduler = getattr(torch.optim.lr_scheduler, after_scheduler_type)
|
||||||
|
filtered_dict = filter_dict(after_scheduler_dict, reload_scheduler)
|
||||||
|
lr_scheduler_dict['after_scheduler'] = reload_scheduler(
|
||||||
|
optimizer,
|
||||||
|
**filtered_dict,
|
||||||
|
)
|
||||||
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
||||||
|
@ -8,6 +8,8 @@ from functools import partial
|
|||||||
|
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||||||
|
from torch.optim.lr_scheduler import MultiplicativeLR
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.testing import rerun_if_address_is_in_use
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
@ -102,10 +104,14 @@ def remove(path):
|
|||||||
raise ValueError("file {} is not a file or dir.".format(path))
|
raise ValueError("file {} is not a file or dir.".format(path))
|
||||||
|
|
||||||
|
|
||||||
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
def run_checkpoint(init_spec_func, use_ddp, test_epoch, test_scheduler, pg):
|
||||||
|
num_epoch = 5
|
||||||
|
warmup_epoch = 2
|
||||||
|
|
||||||
batch = 3
|
batch = 3
|
||||||
feature = 32
|
feature = 32
|
||||||
category = 16
|
category = 16
|
||||||
|
|
||||||
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
|
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
model = MLP(feature, category)
|
model = MLP(feature, category)
|
||||||
@ -129,14 +135,25 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
|||||||
weight_decay=0)
|
weight_decay=0)
|
||||||
optimizer_ref = torch.optim.Adam(model_ref.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
optimizer_ref = torch.optim.Adam(model_ref.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
||||||
|
|
||||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=20, warmup_steps=5)
|
if test_scheduler == 'colossalai_cosine_warmup':
|
||||||
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload, total_steps=20, warmup_steps=5)
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=num_epoch, warmup_steps=warmup_epoch)
|
||||||
lr_scheduler_ref = CosineAnnealingWarmupLR(optimizer=optimizer_ref, total_steps=20, warmup_steps=5)
|
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload,
|
||||||
|
total_steps=num_epoch,
|
||||||
|
warmup_steps=warmup_epoch)
|
||||||
|
|
||||||
|
elif test_scheduler == 'torch_cosine':
|
||||||
|
lr_scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=num_epoch)
|
||||||
|
lr_scheduler_reload = CosineAnnealingLR(optimizer=optimizer_reload, T_max=num_epoch)
|
||||||
|
|
||||||
|
elif test_scheduler == 'torch_lambda':
|
||||||
|
lr_lambda = lambda epoch: 0.95
|
||||||
|
lr_scheduler = MultiplicativeLR(optimizer=optimizer, lr_lambda=lr_lambda)
|
||||||
|
lr_scheduler_reload = MultiplicativeLR(optimizer=optimizer_reload, lr_lambda=lr_lambda)
|
||||||
|
|
||||||
init_spec_func(model, pg)
|
init_spec_func(model, pg)
|
||||||
init_spec_func(model_ref, pg)
|
init_spec_func(model_ref, pg)
|
||||||
|
|
||||||
for epoch in range(0, 20):
|
for epoch in range(0, num_epoch):
|
||||||
if epoch <= test_epoch:
|
if epoch <= test_epoch:
|
||||||
for i, image_dict in enumerate(train_dataloader):
|
for i, image_dict in enumerate(train_dataloader):
|
||||||
if use_ddp:
|
if use_ddp:
|
||||||
@ -155,7 +172,6 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
|||||||
for ref_p, p in zip(model_ref.parameters(), model.parameters()):
|
for ref_p, p in zip(model_ref.parameters(), model.parameters()):
|
||||||
ref_p.data.copy_(p)
|
ref_p.data.copy_(p)
|
||||||
optimizer_ref = copy.deepcopy(optimizer)
|
optimizer_ref = copy.deepcopy(optimizer)
|
||||||
lr_scheduler_ref = copy.deepcopy(lr_scheduler)
|
|
||||||
|
|
||||||
check_param_equal(model, model_ref)
|
check_param_equal(model, model_ref)
|
||||||
save_checkpoint('./checkpoint', epoch, model, optimizer, lr_scheduler)
|
save_checkpoint('./checkpoint', epoch, model, optimizer, lr_scheduler)
|
||||||
@ -189,28 +205,34 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
|||||||
check_param_equal(model_ref, model_reload)
|
check_param_equal(model_ref, model_reload)
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, use_ddp, test_epoch):
|
def run_dist(rank, world_size, port, use_ddp, test_epoch, test_scheduler):
|
||||||
if use_ddp and world_size == 1:
|
if use_ddp and world_size == 1:
|
||||||
return
|
return
|
||||||
tp_world_size = world_size // 2 if use_ddp else world_size
|
tp_world_size = world_size // 2 if use_ddp else world_size
|
||||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
||||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
pg = ProcessGroup(tp_degree=world_size)
|
pg = ProcessGroup(tp_degree=world_size)
|
||||||
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, pg)
|
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, test_scheduler, pg)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [4])
|
@pytest.mark.parametrize('world_size', [4])
|
||||||
@pytest.mark.parametrize('use_ddp', [True])
|
@pytest.mark.parametrize('use_ddp', [True])
|
||||||
@pytest.mark.parametrize('test_epoch', [1, 2, 3])
|
@pytest.mark.parametrize('test_epoch', [1, 2, 3])
|
||||||
|
@pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_checkpoint(world_size, use_ddp, test_epoch):
|
def test_checkpoint(world_size, use_ddp, test_epoch, test_scheduler):
|
||||||
if not os.path.isdir('./checkpoint'):
|
if not os.path.isdir('./checkpoint'):
|
||||||
os.mkdir('./checkpoint')
|
os.mkdir('./checkpoint')
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp, test_epoch=test_epoch)
|
run_func = partial(run_dist,
|
||||||
|
world_size=world_size,
|
||||||
|
port=free_port(),
|
||||||
|
use_ddp=use_ddp,
|
||||||
|
test_epoch=test_epoch,
|
||||||
|
test_scheduler=test_scheduler)
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
remove('./checkpoint')
|
remove('./checkpoint')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_checkpoint(4, True, 1)
|
test_checkpoint(4, True, 1, 1)
|
||||||
|
Loading…
Reference in New Issue
Block a user