mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[zero] adapt zero for unsharded paramters (Optimizer part) (#601)
This commit is contained in:
@@ -42,4 +42,5 @@ def get_training_components():
|
||||
testloader = DummyDataLoader()
|
||||
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
return model_builder, trainloader, testloader, HybridAdam, criterion
|
||||
|
@@ -76,8 +76,11 @@ def run_moe_zero_init(init_device_type, shard_strategy_class):
|
||||
else:
|
||||
assert param.is_replicated
|
||||
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
|
||||
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
|
||||
if param.colo_attr.param_is_sharded:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
|
||||
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
|
||||
else:
|
||||
assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda'
|
||||
|
||||
|
||||
def _run_dist(rank, world_size, port):
|
||||
|
@@ -67,7 +67,7 @@ def run_dist(rank, world_size, port):
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_moe_zero_model(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
|
134
tests/test_moe/test_moe_zero_optim.py
Normal file
134
tests/test_moe/test_moe_zero_optim.py
Normal file
@@ -0,0 +1,134 @@
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import CPUAdam
|
||||
from colossalai.testing import parameterize, rerun_on_exception
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
from colossalai.zero.sharded_model.utils import col_model_deepcopy
|
||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
||||
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
|
||||
from colossalai.utils import get_current_device
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from colossalai.engine.gradient_handler import MoeGradientHandler
|
||||
from colossalai.context import MOE_CONTEXT
|
||||
from colossalai.testing import assert_equal_in_group
|
||||
|
||||
from tests.test_zero_data_parallel.common import CONFIG, check_sharded_model_params
|
||||
from tests.test_moe.test_moe_zero_init import MoeModel
|
||||
|
||||
|
||||
def _run_step(model, optimizer, data, label, criterion, grad_handler):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
|
||||
loss = loss.float()
|
||||
if isinstance(model, ShardedModelV2):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
if grad_handler is not None:
|
||||
grad_handler.handle_gradient()
|
||||
|
||||
optimizer.step()
|
||||
|
||||
|
||||
@parameterize("cpu_offload", [True, False])
|
||||
@parameterize("use_cpuadam", [True, False])
|
||||
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
|
||||
def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, gpu_margin_mem_ratio=0.0):
|
||||
MOE_CONTEXT.reset_loss()
|
||||
shard_strategy = shard_strategy_class()
|
||||
if use_cpuadam and cpu_offload is False:
|
||||
return
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
|
||||
_, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
|
||||
with ZeroInitContext(
|
||||
target_device=torch.device('cpu') if cpu_offload else torch.device(f'cuda:{get_current_device()}'),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=False):
|
||||
zero_model = MoeModel()
|
||||
|
||||
zero_model = ShardedModelV2(
|
||||
zero_model,
|
||||
shard_strategy,
|
||||
offload_config=dict(device='cpu') if cpu_offload else None,
|
||||
use_memory_tracer=gpu_margin_mem_ratio > 0.0,
|
||||
reuse_fp16_shard=use_cpuadam,
|
||||
)
|
||||
|
||||
# check whether parameters are identical in ddp
|
||||
for name, p in zero_model.named_parameters():
|
||||
if not p.colo_attr.param_is_sharded and p.is_replicated:
|
||||
assert_equal_in_group(p.data.to(get_current_device()))
|
||||
|
||||
model = MoeModel().half()
|
||||
col_model_deepcopy(zero_model, model)
|
||||
model = model.cuda().float()
|
||||
|
||||
if use_cpuadam:
|
||||
optimizer_class = CPUAdam
|
||||
optim = optimizer_class(model.parameters(), lr=1e-3)
|
||||
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
|
||||
sharded_optim = ShardedOptimizerV2(zero_model,
|
||||
sharded_optim,
|
||||
cpu_offload=cpu_offload,
|
||||
initial_scale=2**5,
|
||||
gpu_margin_mem_ratio=gpu_margin_mem_ratio,
|
||||
keep_unsharded=True)
|
||||
|
||||
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
|
||||
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
|
||||
apex_grad_handler = MoeGradientHandler(model)
|
||||
|
||||
# Since MOE is not compatible with apex_amp now, we need to convert gate weight to fp32
|
||||
for (n, p), zp in zip(apex_model.named_parameters(), zero_model.parameters()):
|
||||
if 'gate' in n:
|
||||
p.data = p.float()
|
||||
p.data.copy_(zp.data)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 5:
|
||||
break
|
||||
data, label = data.cuda(), label.cuda()
|
||||
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
|
||||
_run_step(zero_model, sharded_optim, data, label, criterion, None)
|
||||
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
|
||||
for param in model.parameters():
|
||||
assert not has_inf_or_nan(param)
|
||||
|
||||
|
||||
def _run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
MOE_CONTEXT.setup(seed=42)
|
||||
_run_test_sharded_optim_v2()
|
||||
|
||||
|
||||
# use_cpuadam = True can be used with cpu_offload = False
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_moe_zero_optim(world_size):
|
||||
run_func = partial(_run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_moe_zero_optim(world_size=2)
|
@@ -124,16 +124,18 @@ def check_params_padding(model, zero_model, loose=False):
|
||||
|
||||
def check_sharded_model_params(model, zero_model, loose=False, reuse_fp16_shard=False):
|
||||
rank = dist.get_rank()
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
if reuse_fp16_shard:
|
||||
zero_p = zero_p.data.to(p.device).float()
|
||||
else:
|
||||
zero_p = zero_p.colo_attr.sharded_data_tensor.payload.to(p.device).float()
|
||||
chunks = torch.flatten(p).chunk(dist.get_world_size())
|
||||
if rank >= len(chunks):
|
||||
continue
|
||||
p = chunks[rank].float()
|
||||
if zero_p.size(0) > p.size(0):
|
||||
zero_p = zero_p[:p.size(0)]
|
||||
for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()):
|
||||
if zero_p.colo_attr.param_is_sharded:
|
||||
if reuse_fp16_shard:
|
||||
zero_p = zero_p.data.to(p.device).float()
|
||||
else:
|
||||
zero_p = zero_p.colo_attr.sharded_data_tensor.payload.to(p.device).float()
|
||||
chunks = torch.flatten(p).chunk(dist.get_world_size())
|
||||
if rank >= len(chunks):
|
||||
continue
|
||||
p = chunks[rank].float()
|
||||
if zero_p.size(0) > p.size(0):
|
||||
zero_p = zero_p[:p.size(0)]
|
||||
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'
|
||||
|
Reference in New Issue
Block a user