[fx] Add linear metainfo class for auto parallel (#1783)

* [fx] metainfo class for auto parallel

* [fx] add unit test for linear metainfo

* [fx] fix bwd param for linear

* [fx] modify unit test

* [fx] modify unit test

* [fx] modify import

* [fx] modify import

* [fx] modify import

* [fx] move meta profiler to auto parallel
This commit is contained in:
Boyuan Yao
2022-11-04 10:55:09 +08:00
committed by GitHub
parent e8a9bebc87
commit 05ce3d369f
10 changed files with 516 additions and 2 deletions

View File

@@ -0,0 +1,3 @@
from .meta_registry import *
from .metainfo import *
from .registry import meta_register

View File

@@ -0,0 +1 @@
from .linear import *

View File

@@ -0,0 +1,157 @@
from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
__all__ = ['linear_meta_info']
@meta_register.register(torch.nn.Linear)
def linear_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Linear meta info generator
The atens graph of torch.nn.Linear with bias is
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (None, %input_2, None), kwargs = {})
%zeros_like_default : [#users=3] = call_function[target=torch.ops.aten.zeros_like.default](args = (%addmm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%sum_dim_int_list : [#users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%zeros_like_default, [None], None), kwargs = {})
%view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%sum_dim_int_list, [None]), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%view_default,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {})
The one without bias is
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%mm_default : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%input_2, None), kwargs = {})
%zeros_like_default : [#users=2] = call_function[target=torch.ops.aten.zeros_like.default](args = (%mm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%zeros_like_default,), kwargs = {})
%mm_default_1 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%t_default, %detach_default), kwargs = {})
%t_default_1 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%mm_default_1,), kwargs = {})
%mm_default_2 : [#users=1] = call_function[target=torch.ops.aten.mm.default](args = (%zeros_like_default, None), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%mm_default_2,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
%t_default_2 : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%t_default_1,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%t_default_2,), kwargs = {})
%detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {})
Returns:
Tuple[TrainCycleItem, TrainCycleItem, bool]: compute cost, memory cost and save input flag
"""
has_bias: bool = False
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
weight_tensor = next(filter(lambda x: x.name == 'weight', args)).data
# process the dimension of input and output
if len(input_tensor.shape) > 2:
input_tensor: torch.Tensor
input_tensor = input_tensor.view(-1, input_tensor.shape[-1])
if len(output_tensor.shape) > 2:
output_tensor: torch.Tensor
output_tensor = output_tensor.view(-1, output_tensor.shape[-1])
if len(args) == 4:
bias_tensor = next(filter(lambda x: x.name == 'bias', args)).data
has_bias = True
if has_bias:
# calculate cost with bias
# the fwd op with compute cost is addmm
# the bwd op with compute cost is mm * 2 and sum.dim_IntList
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.addmm.default](
[bias_tensor, input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,)) + \
flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], (bias_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor) +
activation_size(bias_tensor),
parameter=activation_size(weight_tensor) + activation_size(bias_tensor),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
else:
# calculate cost without bias
# the fwd op with compute cost is mm
# the bwd op with compute cost is mm * 2
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.mm.default](
[input_tensor, torch.transpose(weight_tensor, 0, 1)], (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.mm.default]([output_tensor, weight_tensor], (input_tensor,)) + \
flop_mapping[torch.ops.aten.mm.default]([torch.transpose(output_tensor, 0, 1), input_tensor], (weight_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
fwd_memory_cost = MemoryCost(activation=activation_size(output_tensor),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) + activation_size(weight_tensor),
parameter=activation_size(weight_tensor),
temp=0,
buffer=0)
# total cost is to sum the forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in
fwd_in = [input_tensor]
return compute_cost, memory_cost, fwd_in

View File

@@ -0,0 +1,101 @@
from typing import Callable
import numpy as np
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.tensor.sharding_spec import ShardingSpec
from .registry import meta_register
__all__ = ['MetaInfo']
class MetaInfo:
"""MetaInfo class
This class is used to store meta info based on sharding strategy and the given
target function.
"""
def __init__(self, strategy: ShardingStrategy = None, target: Callable = None) -> None:
# compute cost of forward and backward computation
self.compute_cost: TrainCycleItem
# compute memory cost of forward and backward phase
self.memory_cost: TrainCycleItem
# list of input tensors
self.fwd_in: list[OperationData]
# sharding strategy
self._strategy = strategy
# target function
self._target = target
# compute metainfo if possible
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
@property
def strategy(self) -> ShardingStrategy:
return self._strategy
@property
def target(self) -> Callable:
return self._target
@strategy.setter
def strategy(self, strategy: ShardingStrategy) -> None:
self._strategy = strategy
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
@target.setter
def target(self, target: Callable) -> None:
self._target = target
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
def compute_sharded_tensor(self, operation_data: OperationData, sharding_spec: ShardingSpec) -> torch.Tensor:
"""
Compute sharded meta tensor based on the given data and sharding spec.
"""
shard_sequnce = sharding_spec.sharding_sequence
device_mesh = sharding_spec.device_mesh
shape = operation_data.data.shape
new_shape = []
for dim, shard in zip(shape, shard_sequnce):
if shard.is_replica:
# replica
new_shape.append(dim)
else:
# sharded according to device_mesh shape
new_shape.append(dim // np.prod(np.array([device_mesh.mesh_shape[i] for i in shard.shard_list])))
return OperationData(name=operation_data.name,
data=torch.zeros(new_shape, device="meta"),
type=operation_data.type,
logical_shape=operation_data.logical_shape)
def compute_metainfo(self):
"""
Compute meta info based on sharding strategy and the given target function.
"""
assert meta_register.has(self._target), f'{self._target} not found in the meta registry'
meta_func = meta_register.get(self._target)
# construct args for meta_func
args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()]
# compute metainfo with meta_func
self.compute_cost, self.memory_cost, self.fwd_in = meta_func(*args)

View File

@@ -0,0 +1,32 @@
__all__ = ['Registry']
class Registry:
def __init__(self, name):
self.name = name
self.store = {}
def register(self, source):
def wrapper(func):
if isinstance(source, (list, tuple)):
# support register a list of items for this func
for element in source:
self.store[element] = func
else:
self.store[source] = func
return func
return wrapper
def get(self, source):
assert source in self.store, f'{source} not found in the {self.name} registry'
target = self.store[source]
return target
def has(self, source):
return source in self.store
meta_register = Registry('meta')