[refactor] remove gpc dependency in colotensor's _ops (#1189)

This commit is contained in:
Jiarui Fang
2022-07-04 18:54:37 +08:00
committed by GitHub
parent abf6a262dc
commit 060b917daf
33 changed files with 499 additions and 357 deletions

View File

@@ -1,8 +1,6 @@
import torch
import itertools
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from functools import partial
from colossalai.zero.utils.zero_hook_v2 import ZeROHookV2
from colossalai.gemini.chunk import TensorState, Chunk
@@ -12,6 +10,7 @@ from typing import Dict, Iterable, List, Optional
from colossalai.logging import get_dist_logger
from collections import OrderedDict
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.tensor import ProcessGroup as ColoProcessGroup
from .reducer import Reducer
try:
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys
@@ -45,8 +44,8 @@ class ColoDDP(torch.nn.Module):
>>> from colossalai.core import global_context as gpc
>>> from colossalai.context import ParallelMode
>>> model = torch.nn.Linear(20, 1)
>>> model = ColoDDP(model)
>>> // model = ColoDDP(model, process_group=gpc.get_group(ParallelMode.DATA), cpu_process_group=gpc.get_cpu_group(ParallelMode.DATA))
>>> pg = ProcessGroup(tp_degree = world_size//2)
>>> model = ColoDDP(model, pg)
>>> logits = model(x)
>>> loss = criterion(logits, labels)
>>> model.backward(loss)
@@ -55,13 +54,13 @@ class ColoDDP(torch.nn.Module):
module (torch.nn.Module): Module to apply DDP.
process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses.
If it's None, the default data parallel group will be used. Defaults to None.
process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses for those parameters on CPU.
cpu_process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses for those parameters on CPU.
If it's None, the default CPU data parallel group will be used. Defaults to None.
"""
def __init__(self,
module: torch.nn.Module,
process_group: Optional[dist.ProcessGroup] = None,
process_group: ColoProcessGroup,
cpu_process_group: Optional[dist.ProcessGroup] = None,
bucket_cap_mb: int = 25,
rebuild_bucket: bool = True) -> None:
@@ -69,8 +68,9 @@ class ColoDDP(torch.nn.Module):
super().__init__()
self.module = module
self.comm_stream: torch.cuda.Stream = torch.cuda.Stream()
self.process_group = process_group or gpc.get_group(ParallelMode.DATA)
self.cpu_process_group = cpu_process_group or gpc.get_cpu_group(ParallelMode.DATA)
assert process_group
self.process_group = process_group.dp_process_group()
self.dp_world_size = self.process_group.size()
self.reducer = Reducer(bucket_cap_mb)
self.rebuild_bucket = rebuild_bucket
@@ -120,6 +120,8 @@ class ColoDDP(torch.nn.Module):
return empty_grad
else:
#TODO(jiaruifang) fixme
raise NotImplementedError
dist.all_reduce(grad, group=self.cpu_process_group)
return grad
@@ -191,8 +193,11 @@ class ZeroDDP(ColoDDP):
For more details, see the API reference of ``GeminiManager``.
"""
def __init__(self, module: torch.nn.Module, gemini_manager: GeminiManager) -> None:
super().__init__(module.half())
def __init__(self,
module: torch.nn.Module,
gemini_manager: GeminiManager,
process_group: Optional[ColoProcessGroup] = None) -> None:
super().__init__(module.half(), process_group=process_group)
self.gemini_manager = gemini_manager
self.chunk_manager = gemini_manager.chunk_manager
self.param_op_hook = ZeROHookV2(gemini_manager)