[refactor] remove gpc dependency in colotensor's _ops (#1189)

This commit is contained in:
Jiarui Fang
2022-07-04 18:54:37 +08:00
committed by GitHub
parent abf6a262dc
commit 060b917daf
33 changed files with 499 additions and 357 deletions

View File

@@ -52,5 +52,5 @@ class ColoModule(object):
def get_param_names(self):
return self._shard_params
def register(self, compute_pattern):
def register(self, compute_pattern, pg):
raise NotImplementedError

View File

@@ -1,5 +1,5 @@
from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec
from colossalai.tensor import ComputePattern, distspec, ProcessGroup
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
@@ -10,20 +10,18 @@ class ColoEmbedding(ColoModule):
super(ColoEmbedding, self).__init__()
self._register_shard_params(['weight'])
def register(self, compute_pattern):
def register(self, compute_pattern, pg: ProcessGroup):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
self._set_TP1D(pg)
def _set_TP1D(self):
def _set_TP1D(self, pg: ProcessGroup):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'weight': distspec.shard(pg, [0], [pg.tp_world_size()]),
},
mode='row',
)
@@ -32,9 +30,7 @@ class ColoEmbedding(ColoModule):
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'weight': distspec.shard(pg, [-1], [pg.tp_world_size()]),
},
mode='col',
)

View File

@@ -1,7 +1,5 @@
from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import ComputePattern, distspec, ProcessGroup
class ColoLinear(ColoModule):
@@ -10,22 +8,19 @@ class ColoLinear(ColoModule):
super(ColoLinear, self).__init__()
self._register_shard_params(['weight', 'bias'])
def register(self, compute_pattern):
def register(self, compute_pattern, pg: ProcessGroup):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
self._set_TP1D(pg)
def _set_TP1D(self):
def _set_TP1D(self, pg):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias':
None
'weight': distspec.shard(pg, [-1], [pg.tp_world_size()]),
'bias': None
},
mode='row',
)
@@ -34,12 +29,8 @@ class ColoLinear(ColoModule):
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias':
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
[gpc.get_world_size(ParallelMode.PARALLEL_1D)])
'weight': distspec.shard(pg, [0], [pg.tp_world_size()]),
'bias': distspec.shard(pg, [0], [pg.tp_world_size()])
},
mode='col',
)

View File

@@ -1,5 +1,5 @@
from typing import Dict
from colossalai.tensor import ColoParameter, ComputeSpec, TensorSpec
from colossalai.tensor import ColoParameter, ComputeSpec, TensorSpec, ProcessGroup
from . import ColoModule
import torch
@@ -29,7 +29,7 @@ def get_colo_module(module: torch.nn.Module):
return None
def check_colo_module(module: torch.nn.Module, recursive=True):
def check_colo_module(module: torch.nn.Module, pg: ProcessGroup, recursive=True):
if is_colo_module(module):
colo_module = get_colo_module(module)
param_names = colo_module.get_param_names()
@@ -50,7 +50,7 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
continue
if compute_pattern is not None:
colo_module.register(compute_pattern)
colo_module.register(compute_pattern, pg)
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(
f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
@@ -76,16 +76,20 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
if recursive == True:
for submodule in module.children():
check_colo_module(submodule, recursive=True)
check_colo_module(submodule, pg=pg, recursive=True)
def init_colo_module(module: torch.nn.Module, compute_spec: ComputeSpec, recursive=True, mode='default'):
def init_colo_module(module: torch.nn.Module,
compute_spec: ComputeSpec,
pg: ProcessGroup,
recursive=True,
mode='default'):
compute_pattern = compute_spec.compute_pattern
if is_colo_module(module):
# for each param
# set DistSpec and ComputeSpec
colo_module = get_colo_module(module)
colo_module.register(compute_pattern)
colo_module.register(compute_pattern, pg)
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
raise NotImplementedError
# a set for modules which update at least one param in the init process.
@@ -101,7 +105,7 @@ def init_colo_module(module: torch.nn.Module, compute_spec: ComputeSpec, recursi
for mod in param.shared_param_modules:
modules_update_param.add(mod)
for mod in modules_update_param:
check_colo_module(mod, recursive=False)
check_colo_module(mod, pg, recursive=False)
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, compute_spec, recursive=True, mode=mode)
init_colo_module(submodule, compute_spec, pg=pg, recursive=True, mode=mode)