mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-23 04:23:30 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -28,29 +28,29 @@ from .utils import add_question
|
||||
|
||||
|
||||
class SumEvaluator:
|
||||
|
||||
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||||
""" Set up evaluator for text summarization """
|
||||
def __init__(self, model_name_or_path, max_length=1024, device="cuda:0", cache_dir=None):
|
||||
"""Set up evaluator for text summarization"""
|
||||
self.scorer = UniEvaluator(
|
||||
model_name_or_path='MingZhong/unieval-sum' if model_name_or_path == "" else model_name_or_path,
|
||||
model_name_or_path="MingZhong/unieval-sum" if model_name_or_path == "" else model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
self.task = 'summarization'
|
||||
self.dimensions = ['coherence', 'consistency', 'fluency', 'relevance']
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
self.task = "summarization"
|
||||
self.dimensions = ["coherence", "consistency", "fluency", "relevance"]
|
||||
|
||||
def evaluate(self, data, category, dims=None, overall=True):
|
||||
"""
|
||||
Get the scores of all the given dimensions
|
||||
Get the scores of all the given dimensions
|
||||
|
||||
category: The category to be evaluated.
|
||||
category: The category to be evaluated.
|
||||
|
||||
dims: A list of dimensions to be evaluated. If dims is None, SumEvaluator will evaluate
|
||||
four dimensions: coherence, consistency, fluency, relevance.
|
||||
dims: A list of dimensions to be evaluated. If dims is None, SumEvaluator will evaluate
|
||||
four dimensions: coherence, consistency, fluency, relevance.
|
||||
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
"""
|
||||
n_data = len(data)
|
||||
eval_scores = [{} for _ in range(n_data)]
|
||||
@@ -63,12 +63,12 @@ class SumEvaluator:
|
||||
|
||||
for dim in eval_dims:
|
||||
# Calculate average sentence-level scores for 'consistency' and 'fluency'
|
||||
if dim == 'consistency' or dim == 'fluency':
|
||||
if dim == "consistency" or dim == "fluency":
|
||||
src_list, output_list = [], []
|
||||
n_sents = [] # the number of sentences in each generated summary
|
||||
n_sents = [] # the number of sentences in each generated summary
|
||||
for i in range(n_data):
|
||||
source = data[i]['source']
|
||||
system_outputs = sent_tokenize(data[i]['system_output'])
|
||||
source = data[i]["source"]
|
||||
system_outputs = sent_tokenize(data[i]["system_output"])
|
||||
n_sents.append(len(system_outputs))
|
||||
for j in range(len(system_outputs)):
|
||||
src_list.append(source)
|
||||
@@ -81,24 +81,26 @@ class SumEvaluator:
|
||||
score = []
|
||||
for cur_n_sent in n_sents:
|
||||
# prevent denominator from being 0
|
||||
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]) / (cur_n_sent + 1e-6))
|
||||
score.append(sum(sent_score[start_idx : start_idx + cur_n_sent]) / (cur_n_sent + 1e-6))
|
||||
start_idx += cur_n_sent
|
||||
|
||||
# Calculate summary-level score for 'coherence' and 'relevance'
|
||||
elif dim == 'coherence' or dim == 'relevance':
|
||||
elif dim == "coherence" or dim == "relevance":
|
||||
src_list, output_list, ref_list = [], [], []
|
||||
for i in range(n_data):
|
||||
src_list.append(data[i]['source'])
|
||||
output_list.append(data[i]['system_output'])
|
||||
if dim == 'relevance':
|
||||
ref_list.append(data[i]['reference'])
|
||||
src_list.append(data[i]["source"])
|
||||
output_list.append(data[i]["system_output"])
|
||||
if dim == "relevance":
|
||||
ref_list.append(data[i]["reference"])
|
||||
input_list = add_question(dimension=dim, output=output_list, src=src_list, ref=ref_list, task=self.task)
|
||||
score = self.scorer.score(input_list, self.task, category, dim)
|
||||
|
||||
# Please customize other dimensions here for summarization
|
||||
else:
|
||||
raise NotImplementedError('The input format for this dimension is still undefined. \
|
||||
Please customize it first.')
|
||||
raise NotImplementedError(
|
||||
"The input format for this dimension is still undefined. \
|
||||
Please customize it first."
|
||||
)
|
||||
|
||||
for i in range(n_data):
|
||||
eval_scores[i][dim] = score[i]
|
||||
@@ -106,35 +108,35 @@ class SumEvaluator:
|
||||
# Customize your overall score here.
|
||||
if overall == True:
|
||||
for i in range(n_data):
|
||||
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||||
eval_scores[i]["overall"] = np.mean(list(eval_scores[i].values()))
|
||||
|
||||
return eval_scores
|
||||
|
||||
|
||||
class DialogEvaluator:
|
||||
|
||||
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||||
""" Set up evaluator for dialogues """
|
||||
def __init__(self, model_name_or_path, max_length=1024, device="cuda:0", cache_dir=None):
|
||||
"""Set up evaluator for dialogues"""
|
||||
self.scorer = UniEvaluator(
|
||||
model_name_or_path='MingZhong/unieval-dialog' if model_name_or_path == "" else model_name_or_path,
|
||||
model_name_or_path="MingZhong/unieval-dialog" if model_name_or_path == "" else model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
self.task = 'dialogue'
|
||||
self.dimensions = ['naturalness', 'coherence', 'engagingness', 'groundedness', 'understandability']
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
self.task = "dialogue"
|
||||
self.dimensions = ["naturalness", "coherence", "engagingness", "groundedness", "understandability"]
|
||||
|
||||
def evaluate(self, data, category, dims=None, overall=True):
|
||||
"""
|
||||
Get the scores of all the given dimensions
|
||||
Get the scores of all the given dimensions
|
||||
|
||||
category: The category to be evaluated.
|
||||
category: The category to be evaluated.
|
||||
|
||||
dims: A list of dimensions to be evaluated. If dims is None, DialogEvaluator will evaluate
|
||||
five dimensions: naturalness, coherence, engagingness, groundedness and understandability.
|
||||
dims: A list of dimensions to be evaluated. If dims is None, DialogEvaluator will evaluate
|
||||
five dimensions: naturalness, coherence, engagingness, groundedness and understandability.
|
||||
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
"""
|
||||
n_data = len(data)
|
||||
eval_scores = [{} for _ in range(n_data)]
|
||||
@@ -147,50 +149,48 @@ class DialogEvaluator:
|
||||
|
||||
for dim in eval_dims:
|
||||
# Calculate summation score for 'engagingness'
|
||||
if dim == 'engagingness':
|
||||
if dim == "engagingness":
|
||||
src_list, output_list, context_list = [], [], []
|
||||
n_sents = [] # the number of sentences in each generated response
|
||||
n_sents = [] # the number of sentences in each generated response
|
||||
for i in range(n_data):
|
||||
source = data[i]['source']
|
||||
context = data[i]['context']
|
||||
system_outputs = sent_tokenize(data[i]['system_output'])
|
||||
source = data[i]["source"]
|
||||
context = data[i]["context"]
|
||||
system_outputs = sent_tokenize(data[i]["system_output"])
|
||||
n_sents.append(len(system_outputs))
|
||||
for j in range(len(system_outputs)):
|
||||
src_list.append(source)
|
||||
context_list.append(context)
|
||||
output_list.append(system_outputs[j])
|
||||
input_list = add_question(dimension=dim,
|
||||
output=output_list,
|
||||
src=src_list,
|
||||
context=context_list,
|
||||
task=self.task)
|
||||
input_list = add_question(
|
||||
dimension=dim, output=output_list, src=src_list, context=context_list, task=self.task
|
||||
)
|
||||
sent_score = self.scorer.score(input_list, self.task, category, dim)
|
||||
|
||||
# Get the summation score for each sample
|
||||
start_idx = 0
|
||||
score = []
|
||||
for cur_n_sent in n_sents:
|
||||
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]))
|
||||
score.append(sum(sent_score[start_idx : start_idx + cur_n_sent]))
|
||||
start_idx += cur_n_sent
|
||||
|
||||
# Calculate turn-level score for other dimensions
|
||||
elif dim in ['naturalness', 'coherence', 'groundedness', 'understandability']:
|
||||
elif dim in ["naturalness", "coherence", "groundedness", "understandability"]:
|
||||
src_list, output_list, context_list = [], [], []
|
||||
for i in range(n_data):
|
||||
src_list.append(data[i]['source'])
|
||||
output_list.append(data[i]['system_output'])
|
||||
context_list.append(data[i]['context'])
|
||||
input_list = add_question(dimension=dim,
|
||||
output=output_list,
|
||||
src=src_list,
|
||||
context=context_list,
|
||||
task=self.task)
|
||||
src_list.append(data[i]["source"])
|
||||
output_list.append(data[i]["system_output"])
|
||||
context_list.append(data[i]["context"])
|
||||
input_list = add_question(
|
||||
dimension=dim, output=output_list, src=src_list, context=context_list, task=self.task
|
||||
)
|
||||
score = self.scorer.score(input_list, self.task, category, dim)
|
||||
|
||||
# Please customize other dimensions here for summarization
|
||||
else:
|
||||
raise NotImplementedError('The input format for this dimension is still undefined. \
|
||||
Please customize it first.')
|
||||
raise NotImplementedError(
|
||||
"The input format for this dimension is still undefined. \
|
||||
Please customize it first."
|
||||
)
|
||||
|
||||
for i in range(n_data):
|
||||
eval_scores[i][dim] = score[i]
|
||||
@@ -198,35 +198,35 @@ class DialogEvaluator:
|
||||
# Customize your overall score here.
|
||||
if overall == True:
|
||||
for i in range(n_data):
|
||||
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||||
eval_scores[i]["overall"] = np.mean(list(eval_scores[i].values()))
|
||||
|
||||
return eval_scores
|
||||
|
||||
|
||||
class D2tEvaluator:
|
||||
|
||||
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||||
""" Set up evaluator for data-to-text """
|
||||
def __init__(self, model_name_or_path, max_length=1024, device="cuda:0", cache_dir=None):
|
||||
"""Set up evaluator for data-to-text"""
|
||||
self.scorer = UniEvaluator(
|
||||
model_name_or_path='MingZhong/unieval-sum' if model_name_or_path == "" else model_name_or_path,
|
||||
model_name_or_path="MingZhong/unieval-sum" if model_name_or_path == "" else model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
self.task = 'data2text'
|
||||
self.dimensions = ['naturalness', 'informativeness']
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
self.task = "data2text"
|
||||
self.dimensions = ["naturalness", "informativeness"]
|
||||
|
||||
def evaluate(self, data, category, dims=None, overall=True):
|
||||
"""
|
||||
Get the scores of all the given dimensions
|
||||
Get the scores of all the given dimensions
|
||||
|
||||
category: The category to be evaluated.
|
||||
category: The category to be evaluated.
|
||||
|
||||
dims: A list of dimensions to be evaluated. If dims is None, D2tEvaluator will evaluate
|
||||
two dimensions: naturalness and informativeness.
|
||||
dims: A list of dimensions to be evaluated. If dims is None, D2tEvaluator will evaluate
|
||||
two dimensions: naturalness and informativeness.
|
||||
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
overall: indicates whether the overall score is to be calculated.
|
||||
Overall score can be customized to a combination of scores based on different
|
||||
dimensions. The default here is the average score of all the given dimensions.
|
||||
"""
|
||||
n_data = len(data)
|
||||
eval_scores = [{} for _ in range(n_data)]
|
||||
@@ -240,8 +240,8 @@ class D2tEvaluator:
|
||||
for dim in eval_dims:
|
||||
output_list, ref_list = [], []
|
||||
for i in range(n_data):
|
||||
output_list.append(data[i]['system_output'])
|
||||
ref_list.append(data[i]['reference'])
|
||||
output_list.append(data[i]["system_output"])
|
||||
ref_list.append(data[i]["reference"])
|
||||
|
||||
input_list = add_question(dimension=dim, output=output_list, ref=ref_list, task=self.task)
|
||||
score = self.scorer.score(input_list, self.task, category, dim)
|
||||
@@ -252,38 +252,38 @@ class D2tEvaluator:
|
||||
# Customize your overall score here.
|
||||
if overall == True:
|
||||
for i in range(n_data):
|
||||
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||||
eval_scores[i]["overall"] = np.mean(list(eval_scores[i].values()))
|
||||
|
||||
return eval_scores
|
||||
|
||||
|
||||
class FactEvaluator:
|
||||
|
||||
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||||
""" Set up evaluator for factual consistency detection """
|
||||
def __init__(self, model_name_or_path, max_length=1024, device="cuda:0", cache_dir=None):
|
||||
"""Set up evaluator for factual consistency detection"""
|
||||
self.scorer = UniEvaluator(
|
||||
model_name_or_path='MingZhong/unieval-fact' if model_name_or_path == "" else model_name_or_path,
|
||||
model_name_or_path="MingZhong/unieval-fact" if model_name_or_path == "" else model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
self.task = 'fact'
|
||||
self.dim = 'consistency'
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
self.task = "fact"
|
||||
self.dim = "consistency"
|
||||
|
||||
def evaluate(self, data, category):
|
||||
"""
|
||||
Get the factual consistency score (only 1 dimension for this task)
|
||||
Get the factual consistency score (only 1 dimension for this task)
|
||||
|
||||
category: The category to be evaluated.
|
||||
category: The category to be evaluated.
|
||||
"""
|
||||
n_data = len(data)
|
||||
eval_scores = [{} for _ in range(n_data)]
|
||||
|
||||
# Calculate average sentence-level scores for factual consistency
|
||||
src_list, output_list = [], []
|
||||
n_sents = [] # the number of sentences in the claim
|
||||
n_sents = [] # the number of sentences in the claim
|
||||
for i in range(n_data):
|
||||
source = data[i]['source']
|
||||
system_outputs = sent_tokenize(data[i]['system_output'])
|
||||
source = data[i]["source"]
|
||||
system_outputs = sent_tokenize(data[i]["system_output"])
|
||||
n_sents.append(len(system_outputs))
|
||||
for j in range(len(system_outputs)):
|
||||
src_list.append(source)
|
||||
@@ -295,7 +295,7 @@ class FactEvaluator:
|
||||
start_idx = 0
|
||||
score = []
|
||||
for cur_n_sent in n_sents:
|
||||
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]) / cur_n_sent)
|
||||
score.append(sum(sent_score[start_idx : start_idx + cur_n_sent]) / cur_n_sent)
|
||||
start_idx += cur_n_sent
|
||||
|
||||
for i in range(n_data):
|
||||
@@ -304,28 +304,26 @@ class FactEvaluator:
|
||||
return eval_scores
|
||||
|
||||
|
||||
def get_evaluator(task, model_name_or_path="", max_length=1024, device='cuda:0', cache_dir=None):
|
||||
assert task in ['summarization', 'dialogue', 'data2text', 'fact']
|
||||
if task == 'summarization':
|
||||
return SumEvaluator(model_name_or_path=model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
elif task == 'dialogue':
|
||||
return DialogEvaluator(model_name_or_path=model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
elif task == 'data2text':
|
||||
return D2tEvaluator(model_name_or_path=model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
elif task == 'fact':
|
||||
return FactEvaluator(model_name_or_path=model_name_or_path,
|
||||
max_length=max_length,
|
||||
device=device,
|
||||
cache_dir=cache_dir)
|
||||
def get_evaluator(task, model_name_or_path="", max_length=1024, device="cuda:0", cache_dir=None):
|
||||
assert task in ["summarization", "dialogue", "data2text", "fact"]
|
||||
if task == "summarization":
|
||||
return SumEvaluator(
|
||||
model_name_or_path=model_name_or_path, max_length=max_length, device=device, cache_dir=cache_dir
|
||||
)
|
||||
elif task == "dialogue":
|
||||
return DialogEvaluator(
|
||||
model_name_or_path=model_name_or_path, max_length=max_length, device=device, cache_dir=cache_dir
|
||||
)
|
||||
elif task == "data2text":
|
||||
return D2tEvaluator(
|
||||
model_name_or_path=model_name_or_path, max_length=max_length, device=device, cache_dir=cache_dir
|
||||
)
|
||||
elif task == "fact":
|
||||
return FactEvaluator(
|
||||
model_name_or_path=model_name_or_path, max_length=max_length, device=device, cache_dir=cache_dir
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError('Other tasks are not implemented, \
|
||||
please customize specific tasks here.')
|
||||
raise NotImplementedError(
|
||||
"Other tasks are not implemented, \
|
||||
please customize specific tasks here."
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user