mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-16 17:13:06 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -16,7 +16,7 @@ from sse_starlette.sse import EventSourceResponse
|
||||
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
|
||||
from utils import ChatPromptProcessor, Dialogue, LockedIterator, load_json, sample_streamingly, update_model_kwargs_fn
|
||||
|
||||
CONTEXT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.'
|
||||
CONTEXT = "Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions."
|
||||
MAX_LEN = 512
|
||||
running_lock = Lock()
|
||||
|
||||
@@ -36,11 +36,11 @@ app.state.limiter = limiter
|
||||
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
|
||||
|
||||
# set CORS
|
||||
origin_spec_from_env = os.environ.get('CORS_ORIGIN', None)
|
||||
origin_spec_from_env = os.environ.get("CORS_ORIGIN", None)
|
||||
|
||||
if origin_spec_from_env is not None:
|
||||
# allow CORS from the specified origins
|
||||
origins = os.environ['CORS_ORIGIN'].split(',')
|
||||
origins = os.environ["CORS_ORIGIN"].split(",")
|
||||
else:
|
||||
# allow CORS from all origins
|
||||
origins = ["*"]
|
||||
@@ -58,13 +58,13 @@ def generate_streamingly(prompt, max_new_tokens, top_k, top_p, temperature):
|
||||
inputs = {k: v.cuda() for k, v in tokenizer(prompt, return_tensors="pt").items()}
|
||||
# TODO(ver217): streaming generation does not support repetition_penalty now
|
||||
model_kwargs = {
|
||||
'max_generate_tokens': max_new_tokens,
|
||||
'early_stopping': True,
|
||||
'top_k': top_k,
|
||||
'top_p': top_p,
|
||||
'temperature': temperature,
|
||||
'prepare_inputs_fn': model.prepare_inputs_for_generation,
|
||||
'update_model_kwargs_fn': update_model_kwargs_fn,
|
||||
"max_generate_tokens": max_new_tokens,
|
||||
"early_stopping": True,
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"prepare_inputs_fn": model.prepare_inputs_for_generation,
|
||||
"update_model_kwargs_fn": update_model_kwargs_fn,
|
||||
}
|
||||
is_first_word = True
|
||||
generator = LockedIterator(sample_streamingly(model, **inputs, **model_kwargs), running_lock)
|
||||
@@ -81,9 +81,9 @@ def generate_streamingly(prompt, max_new_tokens, top_k, top_p, temperature):
|
||||
if is_first_word:
|
||||
out_string = out_string.lstrip()
|
||||
is_first_word = False
|
||||
elif current_sub_tokens[0].startswith('▁'):
|
||||
elif current_sub_tokens[0].startswith("▁"):
|
||||
# whitespace will be ignored by the frontend
|
||||
out_string = ' ' + out_string
|
||||
out_string = " " + out_string
|
||||
yield out_string
|
||||
|
||||
|
||||
@@ -92,32 +92,33 @@ async def event_generator(request: Request, generator: Generator):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
try:
|
||||
yield {'event': 'generate', 'data': next(generator)}
|
||||
yield {"event": "generate", "data": next(generator)}
|
||||
except StopIteration:
|
||||
yield {'event': 'end', 'data': ''}
|
||||
yield {"event": "end", "data": ""}
|
||||
break
|
||||
|
||||
|
||||
@app.post('/generate/stream')
|
||||
@limiter.limit('1/second')
|
||||
@app.post("/generate/stream")
|
||||
@limiter.limit("1/second")
|
||||
def generate(data: GenerationTaskReq, request: Request):
|
||||
prompt = prompt_processor.preprocess_prompt(data.history, data.max_new_tokens)
|
||||
event_source = event_generator(
|
||||
request, generate_streamingly(prompt, data.max_new_tokens, data.top_k, data.top_p, data.temperature))
|
||||
request, generate_streamingly(prompt, data.max_new_tokens, data.top_k, data.top_p, data.temperature)
|
||||
)
|
||||
return EventSourceResponse(event_source)
|
||||
|
||||
|
||||
@app.post('/generate')
|
||||
@limiter.limit('1/second')
|
||||
@app.post("/generate")
|
||||
@limiter.limit("1/second")
|
||||
def generate_no_stream(data: GenerationTaskReq, request: Request):
|
||||
prompt = prompt_processor.preprocess_prompt(data.history, data.max_new_tokens)
|
||||
if prompt_processor.has_censored_words(prompt):
|
||||
return prompt_processor.SAFE_RESPONSE
|
||||
inputs = {k: v.cuda() for k, v in tokenizer(prompt, return_tensors="pt").items()}
|
||||
with running_lock:
|
||||
output = model.generate(**inputs, **data.dict(exclude={'history'}))
|
||||
output = model.generate(**inputs, **data.dict(exclude={"history"}))
|
||||
output = output.cpu()
|
||||
prompt_len = inputs['input_ids'].size(1)
|
||||
prompt_len = inputs["input_ids"].size(1)
|
||||
response = output[0, prompt_len:]
|
||||
out_string = tokenizer.decode(response, skip_special_tokens=True)
|
||||
out_string = prompt_processor.postprocess_output(out_string)
|
||||
@@ -126,32 +127,40 @@ def generate_no_stream(data: GenerationTaskReq, request: Request):
|
||||
return out_string
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'pretrained',
|
||||
help='Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.')
|
||||
parser.add_argument('--quant',
|
||||
choices=['8bit', '4bit'],
|
||||
default=None,
|
||||
help='Quantization mode. Default: None (no quantization, fp16).')
|
||||
"pretrained",
|
||||
help="Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gptq_checkpoint',
|
||||
"--quant",
|
||||
choices=["8bit", "4bit"],
|
||||
default=None,
|
||||
help='Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.')
|
||||
parser.add_argument('--gptq_group_size',
|
||||
type=int,
|
||||
default=128,
|
||||
help='Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.')
|
||||
parser.add_argument('--http_host', default='0.0.0.0')
|
||||
parser.add_argument('--http_port', type=int, default=7070)
|
||||
parser.add_argument('--profanity_file',
|
||||
default=None,
|
||||
help='Path to profanity words list. It should be a JSON file containing a list of words.')
|
||||
help="Quantization mode. Default: None (no quantization, fp16).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gptq_checkpoint",
|
||||
default=None,
|
||||
help="Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gptq_group_size",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.",
|
||||
)
|
||||
parser.add_argument("--http_host", default="0.0.0.0")
|
||||
parser.add_argument("--http_port", type=int, default=7070)
|
||||
parser.add_argument(
|
||||
"--profanity_file",
|
||||
default=None,
|
||||
help="Path to profanity words list. It should be a JSON file containing a list of words.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.quant == '4bit':
|
||||
assert args.gptq_checkpoint is not None, 'Please specify a GPTQ checkpoint.'
|
||||
if args.quant == "4bit":
|
||||
assert args.gptq_checkpoint is not None, "Please specify a GPTQ checkpoint."
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.pretrained)
|
||||
|
||||
@@ -161,7 +170,7 @@ if __name__ == '__main__':
|
||||
censored_words = []
|
||||
prompt_processor = ChatPromptProcessor(tokenizer, CONTEXT, MAX_LEN, censored_words=censored_words)
|
||||
|
||||
if args.quant == '4bit':
|
||||
if args.quant == "4bit":
|
||||
with low_resource_init():
|
||||
config = LlamaConfig.from_pretrained(args.pretrained)
|
||||
model = LlamaForCausalLM(config)
|
||||
@@ -170,12 +179,12 @@ if __name__ == '__main__':
|
||||
else:
|
||||
model = LlamaForCausalLM.from_pretrained(
|
||||
args.pretrained,
|
||||
load_in_8bit=(args.quant == '8bit'),
|
||||
load_in_8bit=(args.quant == "8bit"),
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
if args.quant != '8bit':
|
||||
model.half() # seems to fix bugs for some users.
|
||||
if args.quant != "8bit":
|
||||
model.half() # seems to fix bugs for some users.
|
||||
model.eval()
|
||||
|
||||
config = uvicorn.Config(app, host=args.http_host, port=args.http_port)
|
||||
|
||||
Reference in New Issue
Block a user