mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-14 13:42:12 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -12,7 +12,7 @@ from .tracer import register_tracer_impl
|
||||
__all__ = []
|
||||
|
||||
|
||||
@register_tracer_impl(F.linear, name='_bias_addition_impl')
|
||||
@register_tracer_impl(F.linear, name="_bias_addition_impl")
|
||||
def linear_impl(input, weight, bias=None):
|
||||
if bias is None:
|
||||
return F.linear(input, weight)
|
||||
@@ -20,116 +20,130 @@ def linear_impl(input, weight, bias=None):
|
||||
return F.linear(input, weight) + bias
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv1d, name='_bias_addition_impl')
|
||||
@register_tracer_impl(F.conv1d, name="_bias_addition_impl")
|
||||
def conv1d_impl(input, weight, bias=None, stride=_single(1), padding=_single(0), dilation=_single(1), groups=1):
|
||||
if bias is None:
|
||||
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
||||
else:
|
||||
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
||||
(-1, 1))
|
||||
(-1, 1)
|
||||
)
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv2d, name='_bias_addition_impl')
|
||||
@register_tracer_impl(F.conv2d, name="_bias_addition_impl")
|
||||
def conv2d_impl(input, weight, bias=None, stride=_pair(1), padding=_pair(0), dilation=_pair(1), groups=1):
|
||||
if bias is None:
|
||||
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
||||
else:
|
||||
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
||||
(-1, 1, 1))
|
||||
(-1, 1, 1)
|
||||
)
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv3d, name='_bias_addition_impl')
|
||||
@register_tracer_impl(F.conv3d, name="_bias_addition_impl")
|
||||
def conv3d_impl(input, weight, bias=None, stride=_triple(1), padding=_triple(0), dilation=_triple(1), groups=1):
|
||||
if bias is None:
|
||||
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
||||
else:
|
||||
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
||||
(-1, 1, 1, 1))
|
||||
(-1, 1, 1, 1)
|
||||
)
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv_transpose1d, name='_bias_addition_impl')
|
||||
def conv_transpose1d_impl(input,
|
||||
weight,
|
||||
bias=None,
|
||||
stride=_single(1),
|
||||
padding=_single(0),
|
||||
output_padding=_single(0),
|
||||
groups=1,
|
||||
dilation=_single(1)):
|
||||
@register_tracer_impl(F.conv_transpose1d, name="_bias_addition_impl")
|
||||
def conv_transpose1d_impl(
|
||||
input,
|
||||
weight,
|
||||
bias=None,
|
||||
stride=_single(1),
|
||||
padding=_single(0),
|
||||
output_padding=_single(0),
|
||||
groups=1,
|
||||
dilation=_single(1),
|
||||
):
|
||||
if bias is None:
|
||||
return F.conv_transpose1d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation)
|
||||
return F.conv_transpose1d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
)
|
||||
else:
|
||||
return F.conv_transpose1d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation) + bias.reshape((-1, 1))
|
||||
return F.conv_transpose1d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
) + bias.reshape((-1, 1))
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv_transpose2d, name='_bias_addition_impl')
|
||||
def conv_transpose2d_impl(input,
|
||||
weight,
|
||||
bias=None,
|
||||
stride=_pair(1),
|
||||
padding=_pair(0),
|
||||
output_padding=_pair(0),
|
||||
groups=1,
|
||||
dilation=_pair(1)):
|
||||
@register_tracer_impl(F.conv_transpose2d, name="_bias_addition_impl")
|
||||
def conv_transpose2d_impl(
|
||||
input, weight, bias=None, stride=_pair(1), padding=_pair(0), output_padding=_pair(0), groups=1, dilation=_pair(1)
|
||||
):
|
||||
if bias is None:
|
||||
return F.conv_transpose2d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation)
|
||||
return F.conv_transpose2d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
)
|
||||
else:
|
||||
return F.conv_transpose2d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation) + bias.reshape((-1, 1, 1))
|
||||
return F.conv_transpose2d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
) + bias.reshape((-1, 1, 1))
|
||||
|
||||
|
||||
@register_tracer_impl(F.conv_transpose3d, name='_bias_addition_impl')
|
||||
def conv_transpose3d_impl(input,
|
||||
weight,
|
||||
bias=None,
|
||||
stride=_triple(1),
|
||||
padding=_triple(0),
|
||||
output_padding=_triple(0),
|
||||
groups=1,
|
||||
dilation=_triple(1)):
|
||||
@register_tracer_impl(F.conv_transpose3d, name="_bias_addition_impl")
|
||||
def conv_transpose3d_impl(
|
||||
input,
|
||||
weight,
|
||||
bias=None,
|
||||
stride=_triple(1),
|
||||
padding=_triple(0),
|
||||
output_padding=_triple(0),
|
||||
groups=1,
|
||||
dilation=_triple(1),
|
||||
):
|
||||
if bias is None:
|
||||
return F.conv_transpose3d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation)
|
||||
return F.conv_transpose3d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
)
|
||||
else:
|
||||
return F.conv_transpose3d(input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation) + bias.reshape((-1, 1, 1, 1))
|
||||
return F.conv_transpose3d(
|
||||
input,
|
||||
weight,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
groups=groups,
|
||||
dilation=dilation,
|
||||
) + bias.reshape((-1, 1, 1, 1))
|
||||
|
||||
|
||||
@register_tracer_impl(torch.addmm, name='_bias_addition_impl')
|
||||
@register_tracer_impl(torch.Tensor.addmm, name='_bias_addition_impl')
|
||||
@register_tracer_impl(torch.addmm, name="_bias_addition_impl")
|
||||
@register_tracer_impl(torch.Tensor.addmm, name="_bias_addition_impl")
|
||||
def addmm_impl(input, mat1, mat2, beta=1, alpha=1):
|
||||
if alpha != 1 and beta != 1:
|
||||
return F.linear(mat1, mat2.transpose(0, 1)) * alpha + input * beta
|
||||
@@ -141,8 +155,8 @@ def addmm_impl(input, mat1, mat2, beta=1, alpha=1):
|
||||
return F.linear(mat1, mat2.transpose(0, 1)) + input
|
||||
|
||||
|
||||
@register_tracer_impl(torch.addbmm, name='_bias_addition_impl')
|
||||
@register_tracer_impl(torch.Tensor.addbmm, name='_bias_addition_impl')
|
||||
@register_tracer_impl(torch.addbmm, name="_bias_addition_impl")
|
||||
@register_tracer_impl(torch.Tensor.addbmm, name="_bias_addition_impl")
|
||||
def addbmm_impl(input, batch1, batch2, beta=1, alpha=1):
|
||||
if alpha != 1 and beta != 1:
|
||||
return torch.bmm(batch1, batch2.transpose(1, 2)) * alpha + input * beta
|
||||
|
Reference in New Issue
Block a user