[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -25,28 +25,32 @@ def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0
def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
input_tensor = next(
filter(
lambda x:
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
args)).data
lambda x: (x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM)
and x.name != "softmax_dim",
args,
)
).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = 1 if kwargs.get('inplace', False) else 0
is_inplace = 1 if kwargs.get("inplace", False) else 0
flop_counter = elementwise_flop_counter(1, 0)
# calculate compute cost
fwd_compute_cost = flop_counter([input_tensor], [output_tensor])
bwd_compute_cost = flop_counter([output_tensor], [input_tensor])
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
compute_cost = TrainCycleItem(
fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost
)
# calculate memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
# NOTE: if in_place is True, we will not create a new tensor in forward
fwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) * (2 - is_inplace),
parameter=0,
temp=0,
buffer=activation_size(input_tensor) * buffer_mem_scale)
fwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) * (2 - is_inplace),
parameter=0,
temp=0,
buffer=activation_size(input_tensor) * buffer_mem_scale,
)
# temp_mem_scale is for situation like softmax backward
# the buffer will be removed during backward phase
@@ -54,20 +58,23 @@ def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0
activation=activation_size(input_tensor) - activation_size(input_tensor) * buffer_mem_scale,
parameter=0,
temp=activation_size(input_tensor) * temp_mem_scale + activation_size(input_tensor) * buffer_mem_scale,
buffer=0)
buffer=0,
)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
total_cost = MemoryCost(
activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer,
)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = []
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
fwd_buffer = [torch.zeros_like(output_tensor, device="meta")]
fwd_out = [torch.zeros_like(output_tensor, device="meta")]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out