[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,22 +1,14 @@
from typing import Callable, Dict, List, Tuple, Union
from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from ..registry import meta_register
__all__ = ['batchnormnd_meta_info', 'layernorm_meta_info']
__all__ = ["batchnormnd_meta_info", "layernorm_meta_info"]
@meta_register.register(torch.nn.BatchNorm1d)
@@ -65,7 +57,15 @@ def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleIt
# saved inv std and some other args indicating the status of the module
# the bwd outputs are input grad, weight grad and bias grad
bwd_in_args = [
output_tensor, output_tensor, weight_tensor, mean_tensor, var_tensor, mean_tensor, var_tensor, 1e-5, num_batch
output_tensor,
output_tensor,
weight_tensor,
mean_tensor,
var_tensor,
mean_tensor,
var_tensor,
1e-5,
num_batch,
]
bwd_out_args = [input_tensor, weight_tensor, bias_tensor]
@@ -77,29 +77,34 @@ def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleIt
# calculate memory cost
# the fwd activation cost is output plus saved mean and saved inv std
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
fwd_memory_cost = MemoryCost(
activation=compute_size_in_bytes([input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=compute_size_in_bytes([mean_tensor, var_tensor]),
)
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
# and saved inv std during backward phase
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([mean_tensor, var_tensor]),
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
bwd_memory_cost = MemoryCost(
activation=compute_size_in_bytes([input_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([mean_tensor, var_tensor]),
buffer=compute_size_in_bytes([mean_tensor, var_tensor]),
)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
total_cost = MemoryCost(
activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = [torch.zeros_like(input_tensor, device='meta')]
fwd_buffer = [torch.zeros_like(mean_tensor, device='meta'), torch.zeros_like(var_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
fwd_in = [torch.zeros_like(input_tensor, device="meta")]
fwd_buffer = [torch.zeros_like(mean_tensor, device="meta"), torch.zeros_like(var_tensor, device="meta")]
fwd_out = [torch.zeros_like(output_tensor, device="meta")]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
@@ -116,8 +121,8 @@ def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
weight_tensor = next(filter(lambda x: x.name == "weight", args)).data
bias_tensor = next(filter(lambda x: x.name == "bias", args)).data
running_mean = torch.rand(input_tensor.shape[0], 1, device='meta')
running_var = torch.rand(input_tensor.shape[0], 1, device='meta')
running_mean = torch.rand(input_tensor.shape[0], 1, device="meta")
running_var = torch.rand(input_tensor.shape[0], 1, device="meta")
# construct args
fwd_in_args = [input_tensor, [input_tensor.shape[0]], weight_tensor]
@@ -132,27 +137,32 @@ def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
# memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=compute_size_in_bytes([running_mean, running_var]))
fwd_memory_cost = MemoryCost(
activation=compute_size_in_bytes([input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=compute_size_in_bytes([running_mean, running_var]),
)
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([running_mean, running_var]),
buffer=compute_size_in_bytes([running_mean, running_var]))
bwd_memory_cost = MemoryCost(
activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([running_mean, running_var]),
buffer=compute_size_in_bytes([running_mean, running_var]),
)
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
total_cost = MemoryCost(
activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer,
)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = [torch.zeros_like(input_tensor, device='meta')]
fwd_buffer = [torch.zeros_like(running_mean, device='meta'), torch.zeros_like(running_var, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
fwd_in = [torch.zeros_like(input_tensor, device="meta")]
fwd_buffer = [torch.zeros_like(running_mean, device="meta"), torch.zeros_like(running_var, device="meta")]
fwd_out = [torch.zeros_like(output_tensor, device="meta")]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out