[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -4,7 +4,7 @@ import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem
from ..registry import meta_register
@@ -39,16 +39,21 @@ def where_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, Li
# gradient matrix for input x and input y, remove the temp memory and condition tensor generated in forward phase
# NOTE: currently in SPMD solver we always believe that there will be a new input tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size([condition_tensor, x_tensor, y_tensor, output_tensor]))
bwd_mem_cost = MemoryCost(activation=activation_size([x_tensor, y_tensor]) - activation_size([condition_tensor]),
parameter=0,
temp=activation_size([output_tensor]) * 3 + activation_size([condition_tensor]) -
activation_size([x_tensor, y_tensor]),
buffer=0)
bwd_mem_cost = MemoryCost(
activation=activation_size([x_tensor, y_tensor]) - activation_size([condition_tensor]),
parameter=0,
temp=activation_size([output_tensor]) * 3
+ activation_size([condition_tensor])
- activation_size([x_tensor, y_tensor]),
buffer=0,
)
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation,
parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter,
temp=fwd_mem_cost.temp + bwd_mem_cost.temp,
buffer=fwd_mem_cost.buffer + bwd_mem_cost.buffer)
total_mem_cost = MemoryCost(
activation=fwd_mem_cost.activation + bwd_mem_cost.activation,
parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter,
temp=fwd_mem_cost.temp + bwd_mem_cost.temp,
buffer=fwd_mem_cost.buffer + bwd_mem_cost.buffer,
)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)