mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -14,18 +14,20 @@ from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
|
||||
def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
|
||||
target_sharding_spec: ShardingSpec) -> ShardMetaInfo:
|
||||
def _construct_shard_meta_info(
|
||||
node: Node, origin_sharding_spec: ShardingSpec, target_sharding_spec: ShardingSpec
|
||||
) -> ShardMetaInfo:
|
||||
# get comm_action_sequence and total_cost from shape_consistency_manager
|
||||
_, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency(
|
||||
origin_sharding_spec, target_sharding_spec)
|
||||
origin_sharding_spec, target_sharding_spec
|
||||
)
|
||||
|
||||
meta_info = ShardMetaInfo()
|
||||
# NOTE: the cost in shape_consistency_manager.mem_cost is the count in number of numel
|
||||
# get mem cost for ShardMetaInfo
|
||||
mem_cost = shape_consistency_manager.mem_cost(comm_action_sequence)
|
||||
# extract user that has _meta_data and extract element length
|
||||
input_node = next(n for n in node._input_nodes if hasattr(n, '_meta_data'))
|
||||
input_node = next(n for n in node._input_nodes if hasattr(n, "_meta_data"))
|
||||
element_length = input_node._meta_data.element_size()
|
||||
|
||||
mem_cost.fwd.activation *= element_length
|
||||
@@ -37,9 +39,11 @@ def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
|
||||
meta_info.memory_cost = mem_cost
|
||||
|
||||
# get computation cost for ShardMetaInfo
|
||||
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length,
|
||||
total_cost['backward'] * element_length,
|
||||
total_cost['total'] * element_length)
|
||||
meta_info.compute_cost = TrainCycleItem(
|
||||
total_cost["forward"] * element_length,
|
||||
total_cost["backward"] * element_length,
|
||||
total_cost["total"] * element_length,
|
||||
)
|
||||
|
||||
# get tensor shape for ShardMetaInfo
|
||||
origin_sharding_spec: ShardingSpec
|
||||
@@ -47,9 +51,9 @@ def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
|
||||
input_shape = origin_sharding_spec.get_sharded_shape_per_device()
|
||||
output_shape = target_sharding_spec.get_sharded_shape_per_device()
|
||||
|
||||
meta_info.fwd_in = [torch.rand(input_shape, device='meta')]
|
||||
meta_info.fwd_in = [torch.rand(input_shape, device="meta")]
|
||||
meta_info.fwd_buffer = []
|
||||
meta_info.fwd_out = [torch.rand(output_shape, device='meta')]
|
||||
meta_info.fwd_out = [torch.rand(output_shape, device="meta")]
|
||||
|
||||
return meta_info
|
||||
|
||||
@@ -62,8 +66,10 @@ def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -
|
||||
# extract node index and user node index
|
||||
args = node.args
|
||||
node_index, user_node_index = args[3], args[4]
|
||||
origin_sharding_spec, target_sharding_spec = origin_spec_dict[node_index], sharding_spec_dict[node_index][
|
||||
user_node_index]
|
||||
origin_sharding_spec, target_sharding_spec = (
|
||||
origin_spec_dict[node_index],
|
||||
sharding_spec_dict[node_index][user_node_index],
|
||||
)
|
||||
|
||||
return _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
|
||||
|
||||
@@ -77,37 +83,42 @@ def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> S
|
||||
# this case is for all_reduce, there will be no memory cost
|
||||
meta_info = ShardMetaInfo()
|
||||
meta_info.memory_cost = TrainCycleItem(MemoryCost(), MemoryCost(), MemoryCost)
|
||||
output_node = next(n for n in node.users if hasattr(n, '_meta_data'))
|
||||
output_node = next(n for n in node.users if hasattr(n, "_meta_data"))
|
||||
element_length = output_node._meta_data.element_size()
|
||||
|
||||
total_cost = comm_action.comm_spec.get_comm_cost()
|
||||
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length,
|
||||
total_cost['backward'] * element_length,
|
||||
total_cost['total'] * element_length)
|
||||
meta_info.compute_cost = TrainCycleItem(
|
||||
total_cost["forward"] * element_length,
|
||||
total_cost["backward"] * element_length,
|
||||
total_cost["total"] * element_length,
|
||||
)
|
||||
|
||||
input_shape = output_shape = comm_action.comm_spec.sharding_spec.get_sharded_shape_per_device()
|
||||
meta_info.fwd_in = [torch.rand(input_shape, device='meta')]
|
||||
meta_info.fwd_in = [torch.rand(input_shape, device="meta")]
|
||||
meta_info.fwd_buffer = []
|
||||
meta_info.fwd_out = [torch.rand(output_shape, device='meta')]
|
||||
meta_info.fwd_out = [torch.rand(output_shape, device="meta")]
|
||||
else:
|
||||
# this case will be handled by shape consistency manager
|
||||
origin_sharding_spec, target_sharding_spec = comm_action.comm_spec['src_spec'], comm_action.comm_spec[
|
||||
'tgt_spec']
|
||||
origin_sharding_spec, target_sharding_spec = (
|
||||
comm_action.comm_spec["src_spec"],
|
||||
comm_action.comm_spec["tgt_spec"],
|
||||
)
|
||||
meta_info = _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
|
||||
|
||||
return meta_info
|
||||
|
||||
|
||||
def comm_metainfo_pass(gm: GraphModule, sharding_spec_dict: Dict, origin_spec_dict: Dict,
|
||||
comm_actions_dict: Dict) -> GraphModule:
|
||||
def comm_metainfo_pass(
|
||||
gm: GraphModule, sharding_spec_dict: Dict, origin_spec_dict: Dict, comm_actions_dict: Dict
|
||||
) -> GraphModule:
|
||||
"""
|
||||
The method manages all the metainfo of the communication node (run_time_apply, runtime_comm_spec_apply) in the graph.
|
||||
"""
|
||||
for node in gm.graph.nodes:
|
||||
if node.target == runtime_apply:
|
||||
setattr(node, 'best_strategy_info', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
|
||||
setattr(node, "best_strategy_info", _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
|
||||
elif node.target == runtime_comm_spec_apply:
|
||||
setattr(node, 'best_strategy_info', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
|
||||
setattr(node, "best_strategy_info", _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
|
||||
else:
|
||||
pass
|
||||
return gm
|
||||
|
Reference in New Issue
Block a user