[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -10,7 +10,6 @@ from colossalai.tensor.comm_spec import CommSpec
from colossalai.tensor.sharding_spec import ShardingSpec
from .constants import (
BCAST_FUNC_OP,
ELEMENTWISE_FUNC_OP,
ELEMENTWISE_METHOD_OP,
ELEMENTWISE_MODULE_OP,
@@ -18,13 +17,14 @@ from .constants import (
RESHAPE_METHOD_OP,
)
__all__ = ['OperationDataType', 'OperationData', 'TrainCycleItem', 'MemoryCost', 'ShardingStrategy', 'StrategiesVector']
__all__ = ["OperationDataType", "OperationData", "TrainCycleItem", "MemoryCost", "ShardingStrategy", "StrategiesVector"]
class OperationDataType(Enum):
"""
An operation can come from the argument list of an operator or the parameter list of a module.
"""
INPUT = 0
ARG = 1
PARAM = 2
@@ -43,6 +43,7 @@ class OperationData:
data (Any): the value for this data, usually it is a meta tensor.
logical_shape (Tuple[int]): the logical shape of the data, it can be different from the its actual shape in memory.
"""
name: str
type: OperationDataType
data: Any
@@ -69,13 +70,13 @@ class OperationData:
self.logical_shape = _infer_logical_shape(self.data)
def __repr__(self) -> str:
return f'OperationData(name={self.name}, type={self.type})'
return f"OperationData(name={self.name}, type={self.type})"
def __eq__(self, other) -> bool:
return other.name == self.name
def __hash__(self) -> int:
return hash(f'{self.name}')
return hash(f"{self.name}")
@dataclass
@@ -88,6 +89,7 @@ class TrainCycleItem:
fwd (float): the item for the forward pass
bwd (float): the item for the backward pass
"""
fwd: Any
bwd: Any
total: Any
@@ -104,6 +106,7 @@ class MemoryCost:
temp (int): the memory cost incurred by the temporary tensors in bytes.
buffer (int): the memory cost incurred by the module buffer in bytes.
"""
activation: int = 0
parameter: int = 0
temp: int = 0
@@ -120,6 +123,7 @@ class CommType(Enum):
HOOK: the communication action is used to do the grad all reduce.
IMPLICIT: the communication action happens during the kernel execution, such as SyncBatchNorm
"""
BEFORE = 0
AFTER = 1
HOOK = 2
@@ -137,6 +141,7 @@ class CommAction:
arg_index: record the location of tensor which join the communication, we cannot use name of node or op_data at runtime,
because the args of node may be changed by graph transform passes.
"""
comm_spec: CommSpec = None
comm_type: CommType = None
arg_index: int = -1
@@ -156,6 +161,7 @@ class ShardingStrategy:
memory_cost (TrainCycleItem): Memory cost of the output node using this strategy. (default to None)
input_sharding_specs (List(ShardingSpec)): The ShardingSpecs of the input nodes.
"""
name: str
sharding_specs: Dict[OperationData, Union[ShardingSpec, Tuple[ShardingSpec]]] = None
compute_cost: TrainCycleItem = None
@@ -200,7 +206,6 @@ class ShardingStrategy:
raise KeyError(f"Could not find the ShardingSpec for OperationData with name {name}")
def clone(self):
def _deepcopy_dict_vals(data: Dict):
return {k: deepcopy(v) for k, v in data.items()}
@@ -209,31 +214,34 @@ class ShardingStrategy:
# Consider the examples below:
# If self.communication_actions is an empty dictionary {}, then self.communication_actions is not None, but its __bool__ value is False.
# In this case, if we set None to the new object, program will crash when we try to access the communication_actions.items.
communication_actions = _deepcopy_dict_vals(
self.communication_actions) if self.communication_actions is not None else None
communication_actions = (
_deepcopy_dict_vals(self.communication_actions) if self.communication_actions is not None else None
)
# same reason as communication_actions
resharding_costs = _deepcopy_dict_vals(self.resharding_costs) if self.resharding_costs is not None else None
compute_cost = deepcopy(self.compute_cost)
communication_cost = deepcopy(self.communication_cost)
memory_cost = deepcopy(self.memory_cost)
return ShardingStrategy(name=self.name,
sharding_specs=sharding_specs,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
communication_actions=communication_actions,
resharding_costs=resharding_costs)
return ShardingStrategy(
name=self.name,
sharding_specs=sharding_specs,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
communication_actions=communication_actions,
resharding_costs=resharding_costs,
)
class StrategiesVector(list):
'''
"""
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
'''
"""
def __init__(self, node: Node):
super().__init__()
@@ -245,7 +253,7 @@ class StrategiesVector(list):
def check_merge(self):
merge_label = False
if self.node.op == 'call_module':
if self.node.op == "call_module":
target = self.node.target
root_module = self.node.graph.owning_module
submod = root_module.get_submodule(target)
@@ -255,7 +263,7 @@ class StrategiesVector(list):
if submod_type in ELEMENTWISE_MODULE_OP:
merge_label = True
if self.node.op == 'call_function':
if self.node.op == "call_function":
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if self.node.target in ELEMENTWISE_FUNC_OP:
merge_label = True
@@ -267,7 +275,7 @@ class StrategiesVector(list):
if self.node.target in RESHAPE_FUNC_OP:
merge_label = True
if self.node.op == 'call_method':
if self.node.op == "call_method":
# we could merge reshape op, because their computation costs are negligible.
method = getattr(self.node.args[0]._meta_data.__class__, self.node.target)
if method in RESHAPE_METHOD_OP: