[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -17,9 +17,21 @@ from .sharding import (
)
__all__ = [
'BroadcastType', 'get_broadcast_shape', 'is_broadcastable', 'recover_sharding_spec_for_broadcast_shape',
'generate_resharding_costs', 'generate_sharding_spec', 'ignore_sharding_exception', 'check_sharding_spec_validity'
'transpose_partition_dim', 'update_partition_dim', 'enumerate_all_possible_1d_sharding',
'enumerate_all_possible_2d_sharding', 'generate_sharding_size', 'comm_actions_for_oprands', 'pytree_map',
'detect_reshape_mapping', 'check_keep_sharding_status', 'infer_output_dim_partition_dict'
"BroadcastType",
"get_broadcast_shape",
"is_broadcastable",
"recover_sharding_spec_for_broadcast_shape",
"generate_resharding_costs",
"generate_sharding_spec",
"ignore_sharding_exception",
"check_sharding_spec_validity" "transpose_partition_dim",
"update_partition_dim",
"enumerate_all_possible_1d_sharding",
"enumerate_all_possible_2d_sharding",
"generate_sharding_size",
"comm_actions_for_oprands",
"pytree_map",
"detect_reshape_mapping",
"check_keep_sharding_status",
"infer_output_dim_partition_dict",
]

View File

@@ -14,8 +14,11 @@ from colossalai.tensor.comm_spec import CollectiveCommPattern, CommSpec
from colossalai.tensor.sharding_spec import ShardingSpec
__all__ = [
'BroadcastType', 'is_broadcastable', 'get_broadcast_shape', 'recover_sharding_spec_for_broadcast_shape',
'comm_actions_for_oprands'
"BroadcastType",
"is_broadcastable",
"get_broadcast_shape",
"recover_sharding_spec_for_broadcast_shape",
"comm_actions_for_oprands",
]
@@ -41,7 +44,7 @@ def get_broadcast_shape(shape1: torch.Size, shape2: torch.Size) -> List[int]:
"""
Compute the broadcast shape given two shapes.
"""
assert is_broadcastable(shape1, shape2), f'{shape1} and {shape2} are not broadcastable'
assert is_broadcastable(shape1, shape2), f"{shape1} and {shape2} are not broadcastable"
shape1_reverse = shape1[::-1]
shape2_reverse = shape2[::-1]
min_common_dim = min(len(shape1), len(shape2))
@@ -60,8 +63,9 @@ def get_broadcast_dim_info(logical_shape, physical_shape):
logical_num_dims = len(logical_shape)
physical_num_dims = len(physical_shape)
assert logical_num_dims >= physical_num_dims, \
'The number of dimensions in the logical shape is smaller than that of the physical shape, this tensor is not broadcast!'
assert (
logical_num_dims >= physical_num_dims
), "The number of dimensions in the logical shape is smaller than that of the physical shape, this tensor is not broadcast!"
# track the dim and its broadcasting type
logical_dim_broadcast_info = {}
@@ -85,8 +89,9 @@ def get_broadcast_dim_info(logical_shape, physical_shape):
return logical_dim_broadcast_info
def recover_sharding_spec_for_broadcast_shape(logical_sharding_spec: ShardingSpec, logical_shape: torch.Size,
physical_shape: torch.Size) -> ShardingSpec:
def recover_sharding_spec_for_broadcast_shape(
logical_sharding_spec: ShardingSpec, logical_shape: torch.Size, physical_shape: torch.Size
) -> ShardingSpec:
"""
This function computes the sharding spec for the physical shape of a broadcast tensor.
@@ -124,15 +129,18 @@ def recover_sharding_spec_for_broadcast_shape(logical_sharding_spec: ShardingSpe
physical_dim = physical_num_dims - (logical_num_dims - shape_dim)
physical_dim_partition[physical_dim] = mesh_dim
physical_sharding_spec = ShardingSpec(device_mesh=logical_sharding_spec.device_mesh,
entire_shape=physical_shape,
dim_partition_dict=physical_dim_partition)
physical_sharding_spec = ShardingSpec(
device_mesh=logical_sharding_spec.device_mesh,
entire_shape=physical_shape,
dim_partition_dict=physical_dim_partition,
)
return physical_sharding_spec, removed_dims
def comm_actions_for_oprands(node: Node, removed_dims: List[int], op_data: OperationData,
sharding_spec: ShardingSpec) -> CommAction:
def comm_actions_for_oprands(
node: Node, removed_dims: List[int], op_data: OperationData, sharding_spec: ShardingSpec
) -> CommAction:
"""
This method is used to generate communication actions for oprands which lose information
during convert logical shape to physical shape.
@@ -140,9 +148,11 @@ def comm_actions_for_oprands(node: Node, removed_dims: List[int], op_data: Opera
if len(removed_dims) == 1:
# if list length is 1, extract element from list to avoid using flatten device mesh
removed_dims = removed_dims[0]
comm_spec = CommSpec(comm_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
sharding_spec=sharding_spec,
logical_process_axis=removed_dims)
comm_spec = CommSpec(
comm_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
sharding_spec=sharding_spec,
logical_process_axis=removed_dims,
)
if op_data.type == OperationDataType.PARAM:
comm_type = CommType.HOOK
else:
@@ -151,7 +161,7 @@ def comm_actions_for_oprands(node: Node, removed_dims: List[int], op_data: Opera
for index, arg in enumerate(node.args):
if op_data.name == str(arg):
arg_index = index
assert arg_index >= 0, f'op_data should be an argument of node.'
assert arg_index >= 0, f"op_data should be an argument of node."
comm_action = CommAction(
comm_spec=comm_spec,
comm_type=comm_type,

View File

@@ -14,11 +14,12 @@ from colossalai.tensor.sharding_spec import ShardingSpec
from ..constants import INFINITY_COST
__all__ = ['generate_sharding_spec', 'generate_resharding_costs']
__all__ = ["generate_sharding_spec", "generate_resharding_costs"]
def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh,
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
def generate_sharding_spec(
input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh, dim_partition_dict: Dict[int, List[int]]
) -> ShardingSpec:
"""
Generate the sharding spec of the tensor based on the given dim_partition_dict.
@@ -30,7 +31,7 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
"""
if isinstance(input_, Node):
assert hasattr(input_, '_meta_data'), f'The given node has no attribute _meta_data'
assert hasattr(input_, "_meta_data"), f"The given node has no attribute _meta_data"
meta_tensor = input_._meta_data
assert meta_tensor is not None, "The given node's _meta_data attribute is None"
shape = meta_tensor.shape
@@ -38,24 +39,27 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
shape = input_.shape
else:
raise TypeError(
f'We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected.'
f"We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected."
)
for dim_index, sharding_index_list in dim_partition_dict.items():
sharding_list = [device_mesh.mesh_shape[sharding_index] for sharding_index in sharding_index_list]
sharding_size = reduce(operator.mul, sharding_list, 1)
assert shape[
dim_index] % sharding_size == 0, f'we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions.'
assert (
shape[dim_index] % sharding_size == 0
), f"we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions."
sharding_spec = ShardingSpec(device_mesh=device_mesh, entire_shape=shape, dim_partition_dict=dim_partition_dict)
return sharding_spec
def generate_resharding_costs(nodes: List[Node],
sharding_specs: List[ShardingSpec],
count_backward: Optional[bool] = True,
dtype: Optional[torch.dtype] = None,
index=None):
'''
def generate_resharding_costs(
nodes: List[Node],
sharding_specs: List[ShardingSpec],
count_backward: Optional[bool] = True,
dtype: Optional[torch.dtype] = None,
index=None,
):
"""
Compute the resharding costs with this specific strategy.
Argument:
@@ -63,7 +67,7 @@ def generate_resharding_costs(nodes: List[Node],
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
'''
"""
# The resharding_cost of weight is counted due to sharing weight cases.
resharding_costs = {}
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
@@ -76,38 +80,39 @@ def generate_resharding_costs(nodes: List[Node],
for strategy in input_node.strategies_vector:
input_sharding_spec = strategy.output_sharding_spec
if not isinstance(input_sharding_spec, ShardingSpec):
assert isinstance(input_sharding_spec, list), 'only ShardingSpec or List[ShardingSpec] is expected.'
assert isinstance(input_sharding_spec, list), "only ShardingSpec or List[ShardingSpec] is expected."
input_sharding_spec = input_sharding_spec[index]
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
assert isinstance(input_sharding_spec, ShardingSpec), f"The input node should NOT be a tuple of tensor."
try:
# compute the resharding cost
_, _, total_resharding_cost = shape_consistency_manager.shape_consistency(
input_sharding_spec, input_spec)
input_sharding_spec, input_spec
)
# we need multiply the size of elem dtype to get correct communication cost
resharding_cost = total_resharding_cost["total"] * size_per_elem_bytes
except AssertionError as e:
warnings.warn(f'{e}')
warnings.warn(f"{e}")
resharding_cost = INFINITY_COST
resharding_costs[input_node].append(resharding_cost)
return resharding_costs
def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_length_threshold: int = 20):
'''
"""
Find the largest repeat blocks in the graph, whose length is larger than the threshold.
Args:
gm (GraphModule): the graph module to be analyzed.
common_length_threshold (int): the threshold of the repeat block length.
'''
"""
# graph = gm.graph
def _process_args(args):
new_args = []
for arg in args:
if hasattr(arg, '_meta_data'):
if hasattr(arg, "_meta_data"):
meta_data = arg._meta_data
else:
meta_data = arg
@@ -145,7 +150,7 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
return False
for index, node in enumerate(node_list):
if node.op == 'call_module':
if node.op == "call_module":
target = node.target
submod = root_module.get_submodule(target)
submod_type = type(submod)
@@ -155,12 +160,12 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
new_args = _process_args(node.args)
if node.op != 'get_attr':
if node.op != "get_attr":
hash_key = (node.op, target, *new_args)
else:
hash_key = (node.op,)
setattr(node, 'hash_key', hash_key)
setattr(node, "hash_key", hash_key)
hash_value_to_node_dict = {}
@@ -179,7 +184,7 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
# the comparison will be triggered if a common node appears
if len(hash_value_to_node_dict[hash(node.hash_key)]) >= 2:
start_index_list = hash_value_to_node_dict[hash(node.hash_key)]
check_block_list = [node_list[start:start + max_common_length] for start in start_index_list]
check_block_list = [node_list[start : start + max_common_length] for start in start_index_list]
common_label = True
if not _all_equal(check_block_list, _check_node_list_equal):
@@ -201,6 +206,6 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
# recover common subgraph from the index
common_blocks = []
for start in common_blocks_index:
common_blocks.append(node_list[start:start + max_common_length])
common_blocks.append(node_list[start : start + max_common_length])
return common_blocks

View File

@@ -1,12 +1,12 @@
import functools
from typing import Any, Callable, Dict, List, Tuple, Type, Union
from typing import Any, Callable, Tuple, Type, Union
import torch
from colossalai.logging import get_dist_logger
from colossalai.tensor.sharding_spec import ShardingSpec, ShardingSpecException
__all__ = ['ignore_sharding_exception', 'pytree_map']
__all__ = ["ignore_sharding_exception", "pytree_map"]
def ignore_sharding_exception(func):
@@ -48,29 +48,32 @@ def check_sharding_spec_validity(sharding_spec: ShardingSpec, tensor: torch.Tens
tensor_num_dim = tensor.dim()
num_devices_in_col = sharding_spec.device_mesh.shape[0]
num_devices_in_row = sharding_spec.device_mesh.shape[1]
assert sharding_len == tensor_num_dim, \
f'The ShardingSpec ({sharding_spec.sharding_sequence}) is created for {sharding_len}-dimension tensor, but the given tensor is {tensor_num_dim}-dimension ({tensor.shape}).'
assert (
sharding_len == tensor_num_dim
), f"The ShardingSpec ({sharding_spec.sharding_sequence}) is created for {sharding_len}-dimension tensor, but the given tensor is {tensor_num_dim}-dimension ({tensor.shape})."
# make sure the sharding is valid for each dim
for i in range(tensor_num_dim):
dim_size = tensor.shape[i]
dim_spec = sharding_spec.sharding_sequence[i]
if str(dim_spec).startswith('S'):
devices_str = str(dim_spec).lstrip('S')
if str(dim_spec).startswith("S"):
devices_str = str(dim_spec).lstrip("S")
num_devices = 1
if '0' in devices_str:
if "0" in devices_str:
num_devices *= num_devices_in_col
if '1' in devices_str:
if "1" in devices_str:
num_devices *= num_devices_in_row
assert dim_size >= num_devices and dim_size % num_devices == 0, \
f'The dimension at index {i} has value {dim_size}, but it is sharded over {num_devices} devices.'
assert (
dim_size >= num_devices and dim_size % num_devices == 0
), f"The dimension at index {i} has value {dim_size}, but it is sharded over {num_devices} devices."
# make sure the entire shape matches the physical tensor shape
assert sharding_spec.entire_shape == tensor.shape, \
f'The entire_shape of the sharding spec {sharding_spec.entire_shape} does not match the tensor shape {tensor.shape}'
assert (
sharding_spec.entire_shape == tensor.shape
), f"The entire_shape of the sharding spec {sharding_spec.entire_shape} does not match the tensor shape {tensor.shape}"
def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any:

View File

@@ -8,6 +8,7 @@ class PreviousStatus(Enum):
"""
This class shows the status of previous comparison.
"""
RESET = 0
# ORIGIN means the dimension size of original tensor is larger in the previous comparison.
ORIGIN = 1
@@ -130,8 +131,9 @@ def detect_reshape_mapping(origin_shape: torch.Size, tgt_shape: torch.Size) -> D
return reshape_mapping_dict
def check_keep_sharding_status(input_dim_partition_dict: Dict[int, List[int]],
reshape_mapping_dict: Dict[Tuple[int], Tuple[int]]) -> bool:
def check_keep_sharding_status(
input_dim_partition_dict: Dict[int, List[int]], reshape_mapping_dict: Dict[Tuple[int], Tuple[int]]
) -> bool:
"""
This method is used to check whether the reshape operation could implement without converting
the input to fully replicated status.
@@ -172,14 +174,16 @@ def check_keep_sharding_status(input_dim_partition_dict: Dict[int, List[int]],
return True
def infer_output_dim_partition_dict(input_dim_partition_dict: Dict[int, List[int]],
reshape_mapping_dict: Dict[Tuple[int], Tuple[int]]) -> Dict[Tuple[int], Tuple[int]]:
def infer_output_dim_partition_dict(
input_dim_partition_dict: Dict[int, List[int]], reshape_mapping_dict: Dict[Tuple[int], Tuple[int]]
) -> Dict[Tuple[int], Tuple[int]]:
"""
This method is used to infer the output dim partition dict for a reshape operation,
given the input dim partition dict and reshape mapping dict.
"""
assert check_keep_sharding_status(input_dim_partition_dict, reshape_mapping_dict), \
'we only infer output dim partition dict for the reshape operation could keep sharding spec.'
assert check_keep_sharding_status(
input_dim_partition_dict, reshape_mapping_dict
), "we only infer output dim partition dict for the reshape operation could keep sharding spec."
sharded_dims = list(input_dim_partition_dict.keys())
output_dim_partition_dict = {}
for input_dims, output_dims in reshape_mapping_dict.items():

View File

@@ -8,8 +8,11 @@ import torch
from colossalai.tensor.sharding_spec import ShardingSpec
__all__ = [
'transpose_partition_dim', 'update_partition_dim', 'enumerate_all_possible_1d_sharding',
'enumerate_all_possible_2d_sharding', 'generate_sharding_size'
"transpose_partition_dim",
"update_partition_dim",
"enumerate_all_possible_1d_sharding",
"enumerate_all_possible_2d_sharding",
"generate_sharding_size",
]
@@ -22,8 +25,7 @@ def transpose_partition_dim(sharding_spec: ShardingSpec, dim1: int, dim2: int) -
dim1 (int): the tensor dimension to switch
dim2 (int): the tensor dimension to switch
"""
assert len(sharding_spec.entire_shape) >= 2, \
'The entire_shape of the sharding spec must have at least 2 dimensions'
assert len(sharding_spec.entire_shape) >= 2, "The entire_shape of the sharding spec must have at least 2 dimensions"
dim_partition_dict = sharding_spec.dim_partition_dict
# transpose the dim partition
@@ -45,10 +47,9 @@ def transpose_partition_dim(sharding_spec: ShardingSpec, dim1: int, dim2: int) -
return sharding_spec
def update_partition_dim(sharding_spec: ShardingSpec,
dim_mapping: Dict[int, int],
physical_shape: torch.Size,
inplace: bool = False):
def update_partition_dim(
sharding_spec: ShardingSpec, dim_mapping: Dict[int, int], physical_shape: torch.Size, inplace: bool = False
):
"""
This method is used to update the partition dim dict from the logical one to the physical one.
@@ -78,9 +79,9 @@ def update_partition_dim(sharding_spec: ShardingSpec,
new_dim_partition_dict[tensor_dim] = mesh_dims
# update sharding spec
current_sharding_spec.__init__(device_mesh=sharding_spec.device_mesh,
entire_shape=physical_shape,
dim_partition_dict=new_dim_partition_dict)
current_sharding_spec.__init__(
device_mesh=sharding_spec.device_mesh, entire_shape=physical_shape, dim_partition_dict=new_dim_partition_dict
)
return current_sharding_spec