mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 21:09:18 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -14,11 +14,12 @@ from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from ..constants import INFINITY_COST
|
||||
|
||||
__all__ = ['generate_sharding_spec', 'generate_resharding_costs']
|
||||
__all__ = ["generate_sharding_spec", "generate_resharding_costs"]
|
||||
|
||||
|
||||
def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh,
|
||||
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
|
||||
def generate_sharding_spec(
|
||||
input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh, dim_partition_dict: Dict[int, List[int]]
|
||||
) -> ShardingSpec:
|
||||
"""
|
||||
Generate the sharding spec of the tensor based on the given dim_partition_dict.
|
||||
|
||||
@@ -30,7 +31,7 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
|
||||
"""
|
||||
|
||||
if isinstance(input_, Node):
|
||||
assert hasattr(input_, '_meta_data'), f'The given node has no attribute _meta_data'
|
||||
assert hasattr(input_, "_meta_data"), f"The given node has no attribute _meta_data"
|
||||
meta_tensor = input_._meta_data
|
||||
assert meta_tensor is not None, "The given node's _meta_data attribute is None"
|
||||
shape = meta_tensor.shape
|
||||
@@ -38,24 +39,27 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
|
||||
shape = input_.shape
|
||||
else:
|
||||
raise TypeError(
|
||||
f'We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected.'
|
||||
f"We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected."
|
||||
)
|
||||
for dim_index, sharding_index_list in dim_partition_dict.items():
|
||||
sharding_list = [device_mesh.mesh_shape[sharding_index] for sharding_index in sharding_index_list]
|
||||
sharding_size = reduce(operator.mul, sharding_list, 1)
|
||||
assert shape[
|
||||
dim_index] % sharding_size == 0, f'we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions.'
|
||||
assert (
|
||||
shape[dim_index] % sharding_size == 0
|
||||
), f"we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions."
|
||||
|
||||
sharding_spec = ShardingSpec(device_mesh=device_mesh, entire_shape=shape, dim_partition_dict=dim_partition_dict)
|
||||
return sharding_spec
|
||||
|
||||
|
||||
def generate_resharding_costs(nodes: List[Node],
|
||||
sharding_specs: List[ShardingSpec],
|
||||
count_backward: Optional[bool] = True,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
index=None):
|
||||
'''
|
||||
def generate_resharding_costs(
|
||||
nodes: List[Node],
|
||||
sharding_specs: List[ShardingSpec],
|
||||
count_backward: Optional[bool] = True,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
index=None,
|
||||
):
|
||||
"""
|
||||
Compute the resharding costs with this specific strategy.
|
||||
|
||||
Argument:
|
||||
@@ -63,7 +67,7 @@ def generate_resharding_costs(nodes: List[Node],
|
||||
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
|
||||
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
|
||||
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
|
||||
'''
|
||||
"""
|
||||
# The resharding_cost of weight is counted due to sharing weight cases.
|
||||
resharding_costs = {}
|
||||
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
|
||||
@@ -76,38 +80,39 @@ def generate_resharding_costs(nodes: List[Node],
|
||||
for strategy in input_node.strategies_vector:
|
||||
input_sharding_spec = strategy.output_sharding_spec
|
||||
if not isinstance(input_sharding_spec, ShardingSpec):
|
||||
assert isinstance(input_sharding_spec, list), 'only ShardingSpec or List[ShardingSpec] is expected.'
|
||||
assert isinstance(input_sharding_spec, list), "only ShardingSpec or List[ShardingSpec] is expected."
|
||||
input_sharding_spec = input_sharding_spec[index]
|
||||
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
|
||||
assert isinstance(input_sharding_spec, ShardingSpec), f"The input node should NOT be a tuple of tensor."
|
||||
try:
|
||||
# compute the resharding cost
|
||||
_, _, total_resharding_cost = shape_consistency_manager.shape_consistency(
|
||||
input_sharding_spec, input_spec)
|
||||
input_sharding_spec, input_spec
|
||||
)
|
||||
|
||||
# we need multiply the size of elem dtype to get correct communication cost
|
||||
resharding_cost = total_resharding_cost["total"] * size_per_elem_bytes
|
||||
except AssertionError as e:
|
||||
warnings.warn(f'{e}')
|
||||
warnings.warn(f"{e}")
|
||||
resharding_cost = INFINITY_COST
|
||||
resharding_costs[input_node].append(resharding_cost)
|
||||
return resharding_costs
|
||||
|
||||
|
||||
def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_length_threshold: int = 20):
|
||||
'''
|
||||
"""
|
||||
Find the largest repeat blocks in the graph, whose length is larger than the threshold.
|
||||
|
||||
Args:
|
||||
gm (GraphModule): the graph module to be analyzed.
|
||||
common_length_threshold (int): the threshold of the repeat block length.
|
||||
'''
|
||||
"""
|
||||
|
||||
# graph = gm.graph
|
||||
|
||||
def _process_args(args):
|
||||
new_args = []
|
||||
for arg in args:
|
||||
if hasattr(arg, '_meta_data'):
|
||||
if hasattr(arg, "_meta_data"):
|
||||
meta_data = arg._meta_data
|
||||
else:
|
||||
meta_data = arg
|
||||
@@ -145,7 +150,7 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
|
||||
return False
|
||||
|
||||
for index, node in enumerate(node_list):
|
||||
if node.op == 'call_module':
|
||||
if node.op == "call_module":
|
||||
target = node.target
|
||||
submod = root_module.get_submodule(target)
|
||||
submod_type = type(submod)
|
||||
@@ -155,12 +160,12 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
|
||||
|
||||
new_args = _process_args(node.args)
|
||||
|
||||
if node.op != 'get_attr':
|
||||
if node.op != "get_attr":
|
||||
hash_key = (node.op, target, *new_args)
|
||||
else:
|
||||
hash_key = (node.op,)
|
||||
|
||||
setattr(node, 'hash_key', hash_key)
|
||||
setattr(node, "hash_key", hash_key)
|
||||
|
||||
hash_value_to_node_dict = {}
|
||||
|
||||
@@ -179,7 +184,7 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
|
||||
# the comparison will be triggered if a common node appears
|
||||
if len(hash_value_to_node_dict[hash(node.hash_key)]) >= 2:
|
||||
start_index_list = hash_value_to_node_dict[hash(node.hash_key)]
|
||||
check_block_list = [node_list[start:start + max_common_length] for start in start_index_list]
|
||||
check_block_list = [node_list[start : start + max_common_length] for start in start_index_list]
|
||||
|
||||
common_label = True
|
||||
if not _all_equal(check_block_list, _check_node_list_equal):
|
||||
@@ -201,6 +206,6 @@ def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_lengt
|
||||
# recover common subgraph from the index
|
||||
common_blocks = []
|
||||
for start in common_blocks_index:
|
||||
common_blocks.append(node_list[start:start + max_common_length])
|
||||
common_blocks.append(node_list[start : start + max_common_length])
|
||||
|
||||
return common_blocks
|
||||
|
Reference in New Issue
Block a user