[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -10,8 +10,10 @@ def get_submesh_choices(num_hosts, num_devices_per_host, mode="new"):
while i <= num_devices_per_host:
i *= 2
p += 1
assert pow(2, p) == num_devices_per_host, ("Only supports the cases where num_devices_per_host is power of two, "
f"while now num_devices_per_host = {num_devices_per_host}")
assert pow(2, p) == num_devices_per_host, (
"Only supports the cases where num_devices_per_host is power of two, "
f"while now num_devices_per_host = {num_devices_per_host}"
)
if mode == "alpa":
for i in range(p + 1):
submesh_choices.append((1, pow(2, i)))
@@ -24,18 +26,19 @@ def get_submesh_choices(num_hosts, num_devices_per_host, mode="new"):
return submesh_choices
def alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, compute_cost, max_stage_cost,
best_configs):
def alpa_dp_impl(
num_layers, num_devices, num_microbatches, submesh_choices, compute_cost, max_stage_cost, best_configs
):
"""Implementation of Alpa DP for pipeline strategy
Paper reference: https://www.usenix.org/system/files/osdi22-zheng-lianmin.pdf
Paper reference: https://www.usenix.org/system/files/osdi22-zheng-lianmin.pdf
Arguments:
num_layers: K
num_devices: N*M
num_microbatches: B
submesh_choices: List[(n_i,m_i)]
compute_cost: t_intra
"""
Arguments:
num_layers: K
num_devices: N*M
num_microbatches: B
submesh_choices: List[(n_i,m_i)]
compute_cost: t_intra
"""
# For f, layer ID start from 0
# f[#pipeline stages, layer id that is currently being considered, number of devices used]
f = np.full((num_layers + 1, num_layers + 1, num_devices + 1), np.inf, dtype=np.float32)
@@ -54,7 +57,7 @@ def alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, com
for i in range(num_layers, k, -1):
stage_cost = compute_cost[k, i, m]
new_cost = f[s - 1, k, d - n_submesh_devices] + stage_cost
if (stage_cost <= max_stage_cost and new_cost < f[s, k, d]):
if stage_cost <= max_stage_cost and new_cost < f[s, k, d]:
f[s, k, d] = new_cost
f_stage_max[s, k, d] = max(stage_cost, f_stage_max[s - 1, i, d - n_submesh_devices])
f_argmin[s, k, d] = (i, m, best_configs[k, i, m])
@@ -75,34 +78,34 @@ def alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, com
res = []
while current_s > 0 and current_layer < num_layers and current_devices > 0:
next_start_layer, submesh_choice, autosharding_choice = (f_argmin[current_s, current_layer, current_devices])
next_start_layer, submesh_choice, autosharding_choice = f_argmin[current_s, current_layer, current_devices]
assert next_start_layer != -1 and current_devices != -1
res.append(((current_layer, next_start_layer), submesh_choice, autosharding_choice))
current_s -= 1
current_layer = next_start_layer
current_devices -= np.prod(np.array(submesh_choices[submesh_choice]))
assert (current_s == 0 and current_layer == num_layers and current_devices == 0)
assert current_s == 0 and current_layer == num_layers and current_devices == 0
return total_cost, res
def alpa_dp(num_layers,
num_devices,
num_microbatches,
submesh_choices,
num_autosharding_configs,
compute_cost,
gap=1e-6):
def alpa_dp(
num_layers, num_devices, num_microbatches, submesh_choices, num_autosharding_configs, compute_cost, gap=1e-6
):
"""Alpa auto stage dynamic programming.
Code reference: https://github.com/alpa-projects/alpa/blob/main/alpa/pipeline_parallel/stage_construction.py
Code reference: https://github.com/alpa-projects/alpa/blob/main/alpa/pipeline_parallel/stage_construction.py
Arguments:
submesh_choices: List[(int,int)]
num_autosharding_configs: Max number of t_intra(start_layer, end_layer, LogicalMesh)
compute_cost: np.array(num_layers,num_layers,num_submesh_choices,num_autosharding_configs)
"""
assert np.shape(compute_cost) == (num_layers, num_layers, len(submesh_choices),
num_autosharding_configs), "Cost shape wrong."
assert np.shape(compute_cost) == (
num_layers,
num_layers,
len(submesh_choices),
num_autosharding_configs,
), "Cost shape wrong."
all_possible_stage_costs = np.sort(np.unique(compute_cost))
best_cost = np.inf
best_solution = None
@@ -117,8 +120,9 @@ def alpa_dp(num_layers,
break
if max_stage_cost - last_max_stage_cost < gap:
continue
cost, solution = alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, best_compute_cost,
max_stage_cost, best_configs)
cost, solution = alpa_dp_impl(
num_layers, num_devices, num_microbatches, submesh_choices, best_compute_cost, max_stage_cost, best_configs
)
if cost < best_cost:
best_cost = cost
best_solution = solution