mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -40,14 +40,16 @@ class DeviceMesh:
|
||||
|
||||
_DIST_BACKEND = {"cuda": "nccl", "cpu": "gloo"}
|
||||
|
||||
def __init__(self,
|
||||
physical_mesh_id: torch.Tensor,
|
||||
mesh_shape: torch.Size = None,
|
||||
logical_mesh_id: torch.Tensor = None,
|
||||
mesh_alpha: List[float] = None,
|
||||
mesh_beta: List[float] = None,
|
||||
init_process_group: bool = False,
|
||||
device: str = 'cuda'):
|
||||
def __init__(
|
||||
self,
|
||||
physical_mesh_id: torch.Tensor,
|
||||
mesh_shape: torch.Size = None,
|
||||
logical_mesh_id: torch.Tensor = None,
|
||||
mesh_alpha: List[float] = None,
|
||||
mesh_beta: List[float] = None,
|
||||
init_process_group: bool = False,
|
||||
device: str = "cuda",
|
||||
):
|
||||
# ============================
|
||||
# Physical & Logical Mesh IDs
|
||||
# ============================
|
||||
@@ -57,9 +59,10 @@ class DeviceMesh:
|
||||
# logical mesh ids can be obtained via two ways
|
||||
# 1. provide physical mesh id and provide mesh shape
|
||||
# 2. directly supply the logical mesh id
|
||||
assert mesh_shape is None or logical_mesh_id is None, \
|
||||
"Only one of mesh_shape and logical_mesh_id can be specified." \
|
||||
assert mesh_shape is None or logical_mesh_id is None, (
|
||||
"Only one of mesh_shape and logical_mesh_id can be specified."
|
||||
"Logical mesh IDs are obtained from either mesh_shape + physical_mesh_id or directly from the user-supplied logical_mesh_id"
|
||||
)
|
||||
|
||||
if logical_mesh_id is None:
|
||||
self._mesh_shape = mesh_shape
|
||||
@@ -71,12 +74,15 @@ class DeviceMesh:
|
||||
# ensure two things:
|
||||
# 1. logical and physical mesh IDs should contain the same elements
|
||||
# 2. there is no duplicate IDs in each mesh, e.g. [2, 2] is not allowed
|
||||
assert torch.equal(torch.unique(self._physical_mesh_id), torch.unique(self.logical_mesh_id)), \
|
||||
"physical and logical mesh IDs should contain the same elements, please check if you have consistent physical_mesh_id and logical_mesh_id."
|
||||
assert torch.unique(self._physical_mesh_id).numel() == self._physical_mesh_id.numel(), \
|
||||
"Found duplicate IDs in the physical_mesh_id and this is not allowed, please check your physical_mesh_id again."
|
||||
assert torch.unique(self.logical_mesh_id).numel() == self.logical_mesh_id.numel(), \
|
||||
"Found duplicate IDs in the logical_mesh_id and this is not allowed, please check your logical_mesh_id again."
|
||||
assert torch.equal(
|
||||
torch.unique(self._physical_mesh_id), torch.unique(self.logical_mesh_id)
|
||||
), "physical and logical mesh IDs should contain the same elements, please check if you have consistent physical_mesh_id and logical_mesh_id."
|
||||
assert (
|
||||
torch.unique(self._physical_mesh_id).numel() == self._physical_mesh_id.numel()
|
||||
), "Found duplicate IDs in the physical_mesh_id and this is not allowed, please check your physical_mesh_id again."
|
||||
assert (
|
||||
torch.unique(self.logical_mesh_id).numel() == self.logical_mesh_id.numel()
|
||||
), "Found duplicate IDs in the logical_mesh_id and this is not allowed, please check your logical_mesh_id again."
|
||||
|
||||
# ===============================================
|
||||
# coefficient for alpha-beta communication model
|
||||
@@ -92,8 +98,9 @@ class DeviceMesh:
|
||||
self.mesh_beta = tuple(mesh_beta)
|
||||
|
||||
# ensure the alpha and beta have the same shape
|
||||
assert len(self.mesh_alpha) == len(self.mesh_beta), \
|
||||
"mesh_alpha and mesh_beta should have the same length, please check your mesh_alpha and mesh_beta again."
|
||||
assert len(self.mesh_alpha) == len(
|
||||
self.mesh_beta
|
||||
), "mesh_alpha and mesh_beta should have the same length, please check your mesh_alpha and mesh_beta again."
|
||||
|
||||
# =========================
|
||||
# Device for Process Group
|
||||
@@ -109,8 +116,9 @@ class DeviceMesh:
|
||||
# <global-rank>: [ <local-rank-on-axis-0>, <local-rank-on-axis-1>, <local-rank-on-axis-2>, ...]
|
||||
# }
|
||||
self._global_to_local_rank_mapping = dict()
|
||||
self._init_global_to_logical_rank_mapping(mapping=self._global_to_local_rank_mapping,
|
||||
tensor=self.logical_mesh_id)
|
||||
self._init_global_to_logical_rank_mapping(
|
||||
mapping=self._global_to_local_rank_mapping, tensor=self.logical_mesh_id
|
||||
)
|
||||
|
||||
# create process group
|
||||
self._process_group_dict = {}
|
||||
@@ -194,8 +202,9 @@ class DeviceMesh:
|
||||
device_list = [_get_device_by_backend(pg) for pg in process_group]
|
||||
|
||||
# make sure all devices are the same
|
||||
assert all([device == device_list[0] for device in device_list]), \
|
||||
"All devices should be the same, please check your input process groups are created with the same distributed backend."
|
||||
assert all(
|
||||
[device == device_list[0] for device in device_list]
|
||||
), "All devices should be the same, please check your input process groups are created with the same distributed backend."
|
||||
|
||||
# create a fake physical mesh id
|
||||
# as we only get the process group associated with the current process,
|
||||
@@ -270,7 +279,7 @@ class DeviceMesh:
|
||||
result = cls.__new__(cls)
|
||||
memo[id(self)] = result
|
||||
for k, v in self.__dict__.items():
|
||||
if k != '_process_group_dict':
|
||||
if k != "_process_group_dict":
|
||||
setattr(result, k, __import__("copy").deepcopy(v, memo))
|
||||
else:
|
||||
# process group cannot be copied
|
||||
@@ -278,10 +287,9 @@ class DeviceMesh:
|
||||
setattr(result, k, v)
|
||||
return result
|
||||
|
||||
def _init_global_to_logical_rank_mapping(self,
|
||||
mapping: Dict,
|
||||
tensor: torch.Tensor,
|
||||
index_list: List[int] = []) -> Dict[int, List[int]]:
|
||||
def _init_global_to_logical_rank_mapping(
|
||||
self, mapping: Dict, tensor: torch.Tensor, index_list: List[int] = []
|
||||
) -> Dict[int, List[int]]:
|
||||
"""
|
||||
Build a global rank to local rank mapping for each process group in different axis in the logical device mesh.
|
||||
|
||||
@@ -311,15 +319,19 @@ class DeviceMesh:
|
||||
self._init_global_to_logical_rank_mapping(mapping, inner_tensor, index_list + [index])
|
||||
|
||||
def init_logical_process_group(self):
|
||||
'''
|
||||
"""
|
||||
This method is used to initialize the logical process groups which will be used in communications
|
||||
among logical device mesh.
|
||||
Note: if init_process_group set to False, you have to call this method manually. Otherwise,
|
||||
the communication related function, such as ShapeConsistencyManager.apply will raise errors.
|
||||
'''
|
||||
"""
|
||||
# sanity check
|
||||
assert dist.is_initialized, "The torch.distributed should be initialized before calling init_logical_process_group"
|
||||
assert not self._is_initialized, "The logical process group has been initialized, do not call init_logical_process_group twice"
|
||||
assert (
|
||||
dist.is_initialized
|
||||
), "The torch.distributed should be initialized before calling init_logical_process_group"
|
||||
assert (
|
||||
not self._is_initialized
|
||||
), "The logical process group has been initialized, do not call init_logical_process_group twice"
|
||||
|
||||
# update the global rank of the current process
|
||||
self._global_rank_of_current_process = dist.get_rank()
|
||||
@@ -389,7 +401,7 @@ class DeviceMesh:
|
||||
return local_ranks
|
||||
|
||||
def _collate_global_ranks_in_same_process_group(self, global_rank):
|
||||
'''
|
||||
"""
|
||||
Give a global rank and return all global ranks involved in its associated process group in each axis.
|
||||
|
||||
Example:
|
||||
@@ -414,7 +426,7 @@ class DeviceMesh:
|
||||
0: [0, 4, 8, 12],
|
||||
1: [0, 1, 2, 3]
|
||||
# }
|
||||
'''
|
||||
"""
|
||||
# We have init the global rank to local rank by calling _init_global_to_logical_rank_mapping
|
||||
# for self._global_to_local_rank_mapping
|
||||
# the key is the global rank
|
||||
@@ -437,7 +449,6 @@ class DeviceMesh:
|
||||
# in the same process group in the given axis
|
||||
# the _local_rank refers to the local rank of the current process
|
||||
for _local_rank in range(self.logical_mesh_id.shape[dim]):
|
||||
|
||||
# if this dimension is not initialized yet,
|
||||
# initialize it with an empty array
|
||||
if dim not in processes_in_the_same_process_group:
|
||||
@@ -478,29 +489,37 @@ class DeviceMesh:
|
||||
|
||||
flatten_mesh_shape_size = len(self._mesh_shape)
|
||||
flatten_mesh_shape = [self.num_devices]
|
||||
return DeviceMesh(self._physical_mesh_id,
|
||||
tuple(flatten_mesh_shape),
|
||||
mesh_alpha=[max(self.mesh_alpha)] * (flatten_mesh_shape_size - 1),
|
||||
mesh_beta=[max(self.mesh_beta)] * (flatten_mesh_shape_size - 1),
|
||||
init_process_group=self._init_process_group)
|
||||
return DeviceMesh(
|
||||
self._physical_mesh_id,
|
||||
tuple(flatten_mesh_shape),
|
||||
mesh_alpha=[max(self.mesh_alpha)] * (flatten_mesh_shape_size - 1),
|
||||
mesh_beta=[max(self.mesh_beta)] * (flatten_mesh_shape_size - 1),
|
||||
init_process_group=self._init_process_group,
|
||||
)
|
||||
|
||||
def all_gather_cost(self, num_bytes, mesh_dim):
|
||||
num_devices = self.logical_mesh_id.shape[mesh_dim]
|
||||
return (self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] * (num_devices - 1) / num_devices * num_bytes +
|
||||
0.1)
|
||||
return self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] * (num_devices - 1) / num_devices * num_bytes + 0.1
|
||||
|
||||
def all_reduce_cost(self, num_bytes, mesh_dim):
|
||||
num_devices = self.logical_mesh_id.shape[mesh_dim]
|
||||
return (self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] * 2 * (num_devices - 1) / num_devices * num_bytes +
|
||||
0.01)
|
||||
return (
|
||||
self.mesh_alpha[mesh_dim]
|
||||
+ self.mesh_beta[mesh_dim] * 2 * (num_devices - 1) / num_devices * num_bytes
|
||||
+ 0.01
|
||||
)
|
||||
|
||||
def reduce_scatter_cost(self, num_bytes, mesh_dim):
|
||||
num_devices = self.logical_mesh_id.shape[mesh_dim]
|
||||
return (self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] * (num_devices - 1) / num_devices * num_bytes +
|
||||
0.001)
|
||||
return (
|
||||
self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] * (num_devices - 1) / num_devices * num_bytes + 0.001
|
||||
)
|
||||
|
||||
def all_to_all_cost(self, num_bytes, mesh_dim):
|
||||
num_devices = self.logical_mesh_id.shape[mesh_dim]
|
||||
penalty_factor = num_devices / 2.0
|
||||
return (self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] *
|
||||
(num_devices - 1) / num_devices / num_devices * num_bytes * penalty_factor + 0.001)
|
||||
return (
|
||||
self.mesh_alpha[mesh_dim]
|
||||
+ self.mesh_beta[mesh_dim] * (num_devices - 1) / num_devices / num_devices * num_bytes * penalty_factor
|
||||
+ 0.001
|
||||
)
|
||||
|
Reference in New Issue
Block a user