[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -3,7 +3,7 @@
# refer to https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/native_functions.yaml
# for more meta_registrations
from typing import Callable, List, Optional, Tuple, Union
from typing import List, Optional, Union
import torch
from torch.utils._pytree import tree_map
@@ -16,13 +16,11 @@ meta_table = {}
def register_meta(op, register_dispatcher=True):
def wrapper(f):
def add_func(op):
meta_table[op] = f
if register_dispatcher:
name = (op.__name__ if op._overloadname != "default" else op.overloadpacket.__name__)
name = op.__name__ if op._overloadname != "default" else op.overloadpacket.__name__
try:
meta_lib.impl(name, f)
except:
@@ -48,7 +46,6 @@ def meta_conv(
output_padding: List[int],
groups: int,
):
def _formula(ln: int, p: int, d: int, k: int, s: int) -> int:
"""
Formula to apply to calculate the length of some dimension of the output
@@ -125,7 +122,8 @@ def meta_conv(
kernel_size[i],
stride[i],
output_padding_list[i],
))
)
)
else:
ret_shape.append(_formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]))
return ret_shape
@@ -159,22 +157,42 @@ def meta_conv(
shape_out = calc_conv_nd_return_shape(dims, kernel_size, stride, padding, dilation)
out = input_tensor.new_empty((input_tensor.shape[0], out_channels, *shape_out))
mem_fmt = pick_memory_format()
out = out.to(memory_format=mem_fmt) # type: ignore[call-overload]
out = out.to(memory_format=mem_fmt) # type: ignore[call-overload]
return out
@register_meta(aten._convolution.default)
def meta_conv_1(input_tensor: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, stride: List[int],
padding: List[int], dilation: List[int], is_transposed: bool, output_padding: List[int], groups: int,
*extra_args):
def meta_conv_1(
input_tensor: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: List[int],
padding: List[int],
dilation: List[int],
is_transposed: bool,
output_padding: List[int],
groups: int,
*extra_args,
):
out = meta_conv(input_tensor, weight, bias, stride, padding, dilation, is_transposed, output_padding, groups)
return out
@register_meta(aten.convolution_backward.default)
def meta_conv_backward(grad_output: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, bias_sizes, stride,
padding, dilation, transposed, output_padding, groups, output_mask):
return torch.empty_like(input), torch.empty_like(weight), torch.empty((bias_sizes), device='meta')
def meta_conv_backward(
grad_output: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
bias_sizes,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
output_mask,
):
return torch.empty_like(input), torch.empty_like(weight), torch.empty((bias_sizes), device="meta")
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/AdaptiveAveragePooling.cpp
@@ -208,7 +226,6 @@ def meta_cuda_rnn(
batch_sizes,
dropout_state,
):
is_input_packed = len(batch_sizes) != 0
if is_input_packed:
seq_length = len(batch_sizes)
@@ -224,8 +241,11 @@ def meta_cuda_rnn(
if is_input_packed:
out_shape = [batch_sizes_sum, out_size * num_directions]
else:
out_shape = ([mini_batch, seq_length, out_size *
num_directions] if batch_first else [seq_length, mini_batch, out_size * num_directions])
out_shape = (
[mini_batch, seq_length, out_size * num_directions]
if batch_first
else [seq_length, mini_batch, out_size * num_directions]
)
output = input.new_empty(out_shape)
cell_shape = [num_layers * num_directions, mini_batch, hidden_size]
@@ -242,18 +262,20 @@ def meta_cuda_rnn(
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/RNN.cpp
@register_meta(aten._cudnn_rnn_backward.default)
def meta_cudnn_rnn_backward(input: torch.Tensor,
weight: torch.Tensor,
weight_stride0: int,
hx: torch.Tensor,
cx: Optional[torch.Tensor] = None,
*args,
**kwargs):
def meta_cudnn_rnn_backward(
input: torch.Tensor,
weight: torch.Tensor,
weight_stride0: int,
hx: torch.Tensor,
cx: Optional[torch.Tensor] = None,
*args,
**kwargs,
):
print(input, weight, hx, cx)
grad_input = torch.empty_like(input)
grad_weight = torch.empty_like(weight)
grad_hx = torch.empty_like(hx)
grad_cx = torch.empty_like(cx) if cx is not None else torch.empty((), device='meta')
grad_cx = torch.empty_like(cx) if cx is not None else torch.empty((), device="meta")
return grad_input, grad_weight, grad_hx, grad_cx
@@ -298,15 +320,25 @@ def meta_bn(input: torch.Tensor, weight, bias, running_mean, running_var, traini
n_input = input.size(1)
output = torch.empty_like(input)
running_mean = torch.empty((n_input), device='meta')
running_var = torch.empty((n_input), device='meta')
running_mean = torch.empty((n_input), device="meta")
running_var = torch.empty((n_input), device="meta")
return output, running_mean, running_var
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cudnn/BatchNorm.cpp
@register_meta(aten.native_batch_norm_backward.default)
def meta_bn_backward(dY: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, running_mean, running_var, save_mean,
save_invstd, train, eps, output_mask):
def meta_bn_backward(
dY: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
running_mean,
running_var,
save_mean,
save_invstd,
train,
eps,
output_mask,
):
dX = torch.empty_like(input)
dgamma = torch.empty_like(weight)
dbeta = torch.empty_like(weight)
@@ -319,9 +351,9 @@ def meta_cudnn_bn(input: torch.Tensor, weight, bias, running_mean, running_var,
n_input = input.size(1)
output = torch.empty_like(input)
running_mean = torch.empty((n_input), device='meta')
running_var = torch.empty((n_input), device='meta')
reserve = torch.empty((0), dtype=torch.uint8, device='meta')
running_mean = torch.empty((n_input), device="meta")
running_var = torch.empty((n_input), device="meta")
reserve = torch.empty((0), dtype=torch.uint8, device="meta")
return output, running_mean, running_var, reserve
@@ -330,8 +362,17 @@ def meta_cudnn_bn(input: torch.Tensor, weight, bias, running_mean, running_var,
# in training mode (evaluation mode batchnorm has a different algorithm),
# which is why this doesn't accept a 'training' parameter.
@register_meta(aten.cudnn_batch_norm_backward.default)
def meta_cudnn_bn_backward(dY: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, running_mean, running_var,
save_mean, save_invstd, eps, reserve):
def meta_cudnn_bn_backward(
dY: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
running_mean,
running_var,
save_mean,
save_invstd,
eps,
reserve,
):
dX = torch.empty_like(input)
dgamma = torch.empty_like(weight)
dbeta = torch.empty_like(weight)
@@ -345,15 +386,16 @@ def meta_ln(input: torch.Tensor, normalized_shape, weight, bias, eps):
n_input = input.size(1)
output = torch.empty_like(input)
running_mean = torch.empty((bs, n_input, 1), device='meta')
running_var = torch.empty((bs, n_input, 1), device='meta')
running_mean = torch.empty((bs, n_input, 1), device="meta")
running_var = torch.empty((bs, n_input, 1), device="meta")
return output, running_mean, running_var
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/layer_norm.cpp
@register_meta(aten.native_layer_norm_backward.default)
def meta_ln_backward(dY: torch.Tensor, input: torch.Tensor, normalized_shape, mean, rstd, weight, bias,
grad_input_mask):
def meta_ln_backward(
dY: torch.Tensor, input: torch.Tensor, normalized_shape, mean, rstd, weight, bias, grad_input_mask
):
dX = torch.empty_like(input)
dgamma = torch.empty_like(weight)
dbeta = torch.empty_like(bias)
@@ -397,16 +439,19 @@ def meta_index_Tensor(self, indices):
result: List[Optional[torch.Tensor]] = []
for i, index in enumerate(indices):
if index is not None:
assert index.dtype in [torch.long, torch.int8, torch.bool],\
"tensors used as indices must be long, byte or bool tensors"
assert index.dtype in [
torch.long,
torch.int8,
torch.bool,
], "tensors used as indices must be long, byte or bool tensors"
if index.dtype in [torch.int8, torch.bool]:
nonzero = index.nonzero()
k = len(result)
assert k + index.ndim <= self.ndim, f"too many indices for tensor of dimension {self.ndim}"
for j in range(index.ndim):
assert index.shape[j] == self.shape[
k +
j], f"The shape of the mask {index.shape} at index {i} does not match the shape of the indexed tensor {self.shape} at index {k + j}"
assert (
index.shape[j] == self.shape[k + j]
), f"The shape of the mask {index.shape} at index {i} does not match the shape of the indexed tensor {self.shape} at index {k + j}"
result.append(nonzero.select(1, j))
else:
result.append(index)
@@ -482,12 +527,15 @@ def meta_index_Tensor(self, indices):
# ============================== Embedding =========================================
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Embedding.cpp
@register_meta(aten.embedding_dense_backward.default)
def meta_embedding_dense_backward(grad_output: torch.Tensor, indices: torch.Tensor, num_weights, padding_idx,
scale_grad_by_freq):
return torch.empty((num_weights, grad_output.size(-1)),
dtype=grad_output.dtype,
device=grad_output.device,
layout=grad_output.layout)
def meta_embedding_dense_backward(
grad_output: torch.Tensor, indices: torch.Tensor, num_weights, padding_idx, scale_grad_by_freq
):
return torch.empty(
(num_weights, grad_output.size(-1)),
dtype=grad_output.dtype,
device=grad_output.device,
layout=grad_output.layout,
)
# ============================== Dropout ===========================================