mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 09:38:05 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||||
from typing import Any, Dict, Iterable, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
@@ -18,6 +18,7 @@ try:
|
||||
magic_methods,
|
||||
)
|
||||
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg
|
||||
|
||||
CODEGEN_AVAILABLE = True
|
||||
except:
|
||||
from torch.fx.graph import (
|
||||
@@ -32,12 +33,13 @@ except:
|
||||
magic_methods,
|
||||
)
|
||||
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg
|
||||
|
||||
CODEGEN_AVAILABLE = False
|
||||
|
||||
if CODEGEN_AVAILABLE:
|
||||
__all__ = ['ActivationCheckpointCodeGen']
|
||||
__all__ = ["ActivationCheckpointCodeGen"]
|
||||
else:
|
||||
__all__ = ['python_code_with_activation_checkpoint']
|
||||
__all__ = ["python_code_with_activation_checkpoint"]
|
||||
|
||||
|
||||
def _gen_saved_tensors_hooks():
|
||||
@@ -125,15 +127,14 @@ def _find_ckpt_regions(nodes: List[Node]):
|
||||
Find the checkpoint regions given a list of consecutive nodes. The outputs will be list
|
||||
of tuples, each tuple is in the form of (start_index, end_index).
|
||||
"""
|
||||
ckpt_nodes = []
|
||||
ckpt_regions = []
|
||||
start = -1
|
||||
end = -1
|
||||
current_region = None
|
||||
|
||||
for idx, node in enumerate(nodes):
|
||||
if 'activation_checkpoint' in node.meta:
|
||||
act_ckpt_label = node.meta['activation_checkpoint']
|
||||
if "activation_checkpoint" in node.meta:
|
||||
act_ckpt_label = node.meta["activation_checkpoint"]
|
||||
|
||||
# this activation checkpoint label is not set yet
|
||||
# meaning this is the first node of the activation ckpt region
|
||||
@@ -150,7 +151,7 @@ def _find_ckpt_regions(nodes: List[Node]):
|
||||
current_region = act_ckpt_label
|
||||
start = idx
|
||||
end = -1
|
||||
elif current_region is not None and not 'activation_checkpoint' in node.meta:
|
||||
elif current_region is not None and not "activation_checkpoint" in node.meta:
|
||||
# used to check the case below
|
||||
# node ckpt states = [ckpt, ckpt, non-ckpt]
|
||||
end = idx - 1
|
||||
@@ -178,8 +179,8 @@ def _find_offload_regions(nodes: List[Node]):
|
||||
current_region = None
|
||||
|
||||
for idx, node in enumerate(nodes):
|
||||
if 'activation_offload' in node.meta and isinstance(node.meta['activation_offload'], Iterable):
|
||||
act_offload_label = node.meta['activation_offload']
|
||||
if "activation_offload" in node.meta and isinstance(node.meta["activation_offload"], Iterable):
|
||||
act_offload_label = node.meta["activation_offload"]
|
||||
|
||||
if current_region == None:
|
||||
current_region = act_offload_label
|
||||
@@ -226,9 +227,9 @@ def _gen_ckpt_usage(label, activation_offload, input_vars, output_vars, use_reen
|
||||
"""
|
||||
Generate the checkpoint function call code text
|
||||
"""
|
||||
outputs = ', '.join(output_vars)
|
||||
inputs = ', '.join(input_vars)
|
||||
return f'{outputs} = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_{label}, {activation_offload}, {inputs}, use_reentrant={use_reentrant})'
|
||||
outputs = ", ".join(output_vars)
|
||||
inputs = ", ".join(input_vars)
|
||||
return f"{outputs} = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_{label}, {activation_offload}, {inputs}, use_reentrant={use_reentrant})"
|
||||
|
||||
|
||||
def _end_of_ckpt(node: Node, check_idx: int) -> bool:
|
||||
@@ -240,9 +241,9 @@ def _end_of_ckpt(node: Node, check_idx: int) -> bool:
|
||||
Returns:
|
||||
bool
|
||||
"""
|
||||
if 'activation_checkpoint' in node.meta:
|
||||
if isinstance(node.meta['activation_checkpoint'], list):
|
||||
return node.meta['activation_checkpoint'][check_idx] == None
|
||||
if "activation_checkpoint" in node.meta:
|
||||
if isinstance(node.meta["activation_checkpoint"], list):
|
||||
return node.meta["activation_checkpoint"][check_idx] == None
|
||||
else:
|
||||
return False
|
||||
else:
|
||||
@@ -260,11 +261,11 @@ def _find_nested_ckpt_regions(nodes, check_idx=0):
|
||||
current_region = None
|
||||
|
||||
for idx, node in enumerate(nodes):
|
||||
if 'activation_checkpoint' in node.meta:
|
||||
if isinstance(node.meta['activation_checkpoint'], int):
|
||||
act_ckpt_label = node.meta['activation_checkpoint']
|
||||
if "activation_checkpoint" in node.meta:
|
||||
if isinstance(node.meta["activation_checkpoint"], int):
|
||||
act_ckpt_label = node.meta["activation_checkpoint"]
|
||||
else:
|
||||
act_ckpt_label = node.meta['activation_checkpoint'][check_idx]
|
||||
act_ckpt_label = node.meta["activation_checkpoint"][check_idx]
|
||||
|
||||
# this activation checkpoint label is not set yet
|
||||
# meaning this is the first node of the activation ckpt region
|
||||
@@ -298,13 +299,9 @@ def _find_nested_ckpt_regions(nodes, check_idx=0):
|
||||
return ckpt_regions
|
||||
|
||||
|
||||
def emit_ckpt_func(body,
|
||||
ckpt_func,
|
||||
node_list: List[Node],
|
||||
emit_node_func,
|
||||
delete_unused_value_func,
|
||||
level=0,
|
||||
in_ckpt=False):
|
||||
def emit_ckpt_func(
|
||||
body, ckpt_func, node_list: List[Node], emit_node_func, delete_unused_value_func, level=0, in_ckpt=False
|
||||
):
|
||||
"""Emit ckpt function in nested way
|
||||
Args:
|
||||
body: forward code, in recursive calls, this part will be checkpoint
|
||||
@@ -321,17 +318,17 @@ def emit_ckpt_func(body,
|
||||
inputs, outputs = _find_input_and_output_nodes(node_list)
|
||||
|
||||
# if the current checkpoint function use int as label, using old generation method
|
||||
if isinstance(node_list[0].meta['activation_checkpoint'], int):
|
||||
label = node_list[0].meta['activation_checkpoint']
|
||||
if isinstance(node_list[0].meta["activation_checkpoint"], int):
|
||||
label = node_list[0].meta["activation_checkpoint"]
|
||||
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
|
||||
ckpt_func.append(f'{ckpt_fn_def}\n')
|
||||
ckpt_func.append(f"{ckpt_fn_def}\n")
|
||||
for node in node_list:
|
||||
emit_node_func(node, ckpt_func)
|
||||
ckpt_func[-1] = ' ' + ckpt_func[-1]
|
||||
ckpt_func[-1] = " " + ckpt_func[-1]
|
||||
delete_unused_value_func(node, ckpt_func)
|
||||
|
||||
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
|
||||
activation_offload = node_list[0].meta.get('activation_offload', False)
|
||||
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n")
|
||||
activation_offload = node_list[0].meta.get("activation_offload", False)
|
||||
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False)
|
||||
usage += "\n"
|
||||
body.append(usage)
|
||||
@@ -340,12 +337,12 @@ def emit_ckpt_func(body,
|
||||
else:
|
||||
# label given by each layer, e.g. if you are currently at level [0, 1, 1]
|
||||
# the label will be '0_1_1'
|
||||
label = "_".join([str(idx) for idx in node_list[0].meta['activation_checkpoint'][:level + 1]])
|
||||
label = "_".join([str(idx) for idx in node_list[0].meta["activation_checkpoint"][: level + 1]])
|
||||
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
|
||||
ckpt_func.append(f'{ckpt_fn_def}\n')
|
||||
ckpt_func.append(f"{ckpt_fn_def}\n")
|
||||
|
||||
# if there is more level to fetch
|
||||
if level + 1 < len(node_list[0].meta['activation_checkpoint']):
|
||||
if level + 1 < len(node_list[0].meta["activation_checkpoint"]):
|
||||
ckpt_regions = _find_nested_ckpt_regions(node_list, level + 1)
|
||||
start_idx = [item[0] for item in ckpt_regions]
|
||||
end_idx = [item[1] for item in ckpt_regions]
|
||||
@@ -358,38 +355,45 @@ def emit_ckpt_func(body,
|
||||
break
|
||||
|
||||
if node_idx in start_idx:
|
||||
ckpt_node_list = node_list[node_idx:end_idx[start_idx.index(node_idx)] + 1]
|
||||
emit_ckpt_func(ckpt_func, ckpt_func_buffer, ckpt_node_list, emit_node_func,
|
||||
delete_unused_value_func, level + 1, True)
|
||||
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1]
|
||||
emit_ckpt_func(
|
||||
ckpt_func,
|
||||
ckpt_func_buffer,
|
||||
ckpt_node_list,
|
||||
emit_node_func,
|
||||
delete_unused_value_func,
|
||||
level + 1,
|
||||
True,
|
||||
)
|
||||
node_idx += len(ckpt_node_list)
|
||||
|
||||
else:
|
||||
node = node_list[node_idx]
|
||||
emit_node_func(node, ckpt_func)
|
||||
ckpt_func[-1] = ' ' + ckpt_func[-1]
|
||||
ckpt_func[-1] = " " + ckpt_func[-1]
|
||||
delete_unused_value_func(node, ckpt_func)
|
||||
node_idx += 1
|
||||
|
||||
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
|
||||
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n")
|
||||
ckpt_func += ckpt_func_buffer
|
||||
activation_offload = node_list[0].meta.get('activation_offload', False)
|
||||
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + '\n'
|
||||
activation_offload = node_list[0].meta.get("activation_offload", False)
|
||||
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + "\n"
|
||||
if in_ckpt:
|
||||
usage = ' ' + usage
|
||||
usage = " " + usage
|
||||
body.append(usage)
|
||||
|
||||
# last level
|
||||
else:
|
||||
for node in node_list:
|
||||
emit_node_func(node, ckpt_func)
|
||||
ckpt_func[-1] = ' ' + ckpt_func[-1]
|
||||
ckpt_func[-1] = " " + ckpt_func[-1]
|
||||
delete_unused_value_func(node, ckpt_func)
|
||||
|
||||
ckpt_func.append(' ' + _gen_ckpt_output(outputs) + '\n\n')
|
||||
activation_offload = node_list[0].meta.get('activation_offload', False)
|
||||
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + '\n'
|
||||
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n")
|
||||
activation_offload = node_list[0].meta.get("activation_offload", False)
|
||||
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + "\n"
|
||||
if in_ckpt:
|
||||
usage = ' ' + usage
|
||||
usage = " " + usage
|
||||
body.append(usage)
|
||||
|
||||
|
||||
@@ -420,7 +424,7 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
||||
|
||||
# find the input and output var names for each offload region
|
||||
for idx, (start, end) in enumerate(offload_regions):
|
||||
offload_node_list = node_list[start:end + 1]
|
||||
offload_node_list = node_list[start : end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(offload_node_list)
|
||||
offload_inputs.append(inputs)
|
||||
offload_outputs.append(outputs)
|
||||
@@ -436,7 +440,7 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
||||
|
||||
# process ckpt_regions
|
||||
if node_idx in start_idx:
|
||||
ckpt_node_list = node_list[node_idx:end_idx[start_idx.index(node_idx)] + 1]
|
||||
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1]
|
||||
emit_ckpt_func(body, ckpt_func, ckpt_node_list, emit_node_func, delete_unused_value_func)
|
||||
node_idx += len(ckpt_node_list)
|
||||
|
||||
@@ -470,7 +474,7 @@ def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_nod
|
||||
|
||||
if within_offload_region:
|
||||
emit_node_func(node, body)
|
||||
body[-1] = ' ' + body[-1]
|
||||
body[-1] = " " + body[-1]
|
||||
delete_unused_value_func(node, body)
|
||||
|
||||
else:
|
||||
@@ -508,14 +512,14 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
|
||||
# find the input and output var names for each region
|
||||
for idx, (start, end) in enumerate(ckpt_regions):
|
||||
ckpt_node_list = node_list[start:end + 1]
|
||||
ckpt_node_list = node_list[start : end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(ckpt_node_list)
|
||||
input_vars.append(inputs)
|
||||
output_vars.append(outputs)
|
||||
|
||||
# find the input and output var names for each offload region
|
||||
for idx, (start, end) in enumerate(offload_regions):
|
||||
offload_node_list = node_list[start:end + 1]
|
||||
offload_node_list = node_list[start : end + 1]
|
||||
inputs, outputs = _find_input_and_output_nodes(offload_node_list)
|
||||
offload_inputs.append(inputs)
|
||||
offload_outputs.append(outputs)
|
||||
@@ -527,7 +531,7 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
if idx in start_idx:
|
||||
label = start_idx.index(idx)
|
||||
ckpt_fn_def = _gen_ckpt_fn_def(label, input_vars[label])
|
||||
ckpt_func.append(f'{ckpt_fn_def}\n')
|
||||
ckpt_func.append(f"{ckpt_fn_def}\n")
|
||||
within_ckpt_region = True
|
||||
|
||||
if idx in offload_starts:
|
||||
@@ -559,12 +563,12 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
# NOTE: currently we separate body and ckpt_func definition
|
||||
if within_ckpt_region:
|
||||
emit_node_func(node, ckpt_func)
|
||||
ckpt_func[-1] = ' ' + ckpt_func[-1]
|
||||
ckpt_func[-1] = " " + ckpt_func[-1]
|
||||
delete_unused_value_func(node, ckpt_func)
|
||||
|
||||
elif within_offload_region:
|
||||
emit_node_func(node, body)
|
||||
body[-1] = ' ' + body[-1]
|
||||
body[-1] = " " + body[-1]
|
||||
delete_unused_value_func(node, body)
|
||||
|
||||
else:
|
||||
@@ -576,13 +580,13 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
# generate return statement
|
||||
label = end_idx.index(idx)
|
||||
return_statement = _gen_ckpt_output(output_vars[label])
|
||||
return_statement = f' {return_statement}\n\n'
|
||||
return_statement = f" {return_statement}\n\n"
|
||||
ckpt_func.append(return_statement)
|
||||
|
||||
# we need to check if the checkpoint need to offload the input
|
||||
start_node_idx = start_idx[label]
|
||||
if 'activation_offload' in node_list[start_node_idx].meta:
|
||||
activation_offload = node_list[start_node_idx].meta['activation_offload']
|
||||
if "activation_offload" in node_list[start_node_idx].meta:
|
||||
activation_offload = node_list[start_node_idx].meta["activation_offload"]
|
||||
else:
|
||||
activation_offload = False
|
||||
|
||||
@@ -594,8 +598,8 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
if input_node.op != "placeholder":
|
||||
non_leaf_input = 1
|
||||
for user in input_node.users:
|
||||
if 'activation_checkpoint' in user.meta:
|
||||
if user.meta['activation_checkpoint'] == label:
|
||||
if "activation_checkpoint" in user.meta:
|
||||
if user.meta["activation_checkpoint"] == label:
|
||||
if user.op == "call_module":
|
||||
if hasattr(user.graph.owning_module.get_submodule(user.target), "inplace"):
|
||||
use_reentrant = not user.graph.owning_module.get_submodule(user.target).inplace
|
||||
@@ -610,7 +614,7 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
|
||||
# generate checkpoint function call in a new line
|
||||
usage = _gen_ckpt_usage(label, activation_offload, input_vars[label], output_vars[label], use_reentrant)
|
||||
usage += '\n'
|
||||
usage += "\n"
|
||||
body.append(usage)
|
||||
within_ckpt_region = False
|
||||
|
||||
@@ -621,7 +625,6 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
|
||||
if CODEGEN_AVAILABLE:
|
||||
|
||||
class ActivationCheckpointCodeGen(CodeGen):
|
||||
|
||||
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode:
|
||||
free_vars: List[str] = []
|
||||
body: List[str] = []
|
||||
@@ -629,7 +632,7 @@ if CODEGEN_AVAILABLE:
|
||||
wrapped_fns: Dict[str, None] = {}
|
||||
|
||||
# Wrap string in list to pass by reference
|
||||
maybe_return_annotation: List[str] = ['']
|
||||
maybe_return_annotation: List[str] = [""]
|
||||
|
||||
def add_global(name_hint: str, obj: Any):
|
||||
"""Add an obj to be tracked as a global.
|
||||
@@ -637,7 +640,7 @@ if CODEGEN_AVAILABLE:
|
||||
Graph, like functions or types.
|
||||
Returns: the global name that should be used to reference 'obj' in generated source.
|
||||
"""
|
||||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
||||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
||||
# HACK: workaround for how torch custom ops are registered. We
|
||||
# can't import them like normal modules so they must retain their
|
||||
# fully qualified name.
|
||||
@@ -662,16 +665,16 @@ if CODEGEN_AVAILABLE:
|
||||
def type_repr(o: Any):
|
||||
if o == ():
|
||||
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
||||
return '()'
|
||||
return "()"
|
||||
|
||||
typename = _type_repr(o)
|
||||
|
||||
if hasattr(o, '__origin__'):
|
||||
if hasattr(o, "__origin__"):
|
||||
# This is a generic type, e.g. typing.List[torch.Tensor]
|
||||
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
||||
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
||||
|
||||
if hasattr(o, '__args__'):
|
||||
if hasattr(o, "__args__"):
|
||||
# Assign global names for each of the inner type variables.
|
||||
args = [type_repr(arg) for arg in o.__args__]
|
||||
|
||||
@@ -690,19 +693,18 @@ if CODEGEN_AVAILABLE:
|
||||
return add_global(typename, o)
|
||||
|
||||
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
|
||||
|
||||
def _get_repr(arg):
|
||||
# Handle NamedTuples (if it has `_fields`) via add_global.
|
||||
if isinstance(arg, tuple) and hasattr(arg, '_fields'):
|
||||
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
|
||||
qualified_name = _get_qualified_name(type(arg))
|
||||
global_name = add_global(qualified_name, type(arg))
|
||||
return f"{global_name}{repr(tuple(arg))}"
|
||||
return repr(arg)
|
||||
|
||||
args_s = ', '.join(_get_repr(a) for a in args)
|
||||
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items())
|
||||
args_s = ", ".join(_get_repr(a) for a in args)
|
||||
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
|
||||
if args_s and kwargs_s:
|
||||
return f'{args_s}, {kwargs_s}'
|
||||
return f"{args_s}, {kwargs_s}"
|
||||
return args_s or kwargs_s
|
||||
|
||||
# Run through reverse nodes and record the first instance of a use
|
||||
@@ -728,90 +730,101 @@ if CODEGEN_AVAILABLE:
|
||||
not used in the remainder of the code are freed and the memory usage
|
||||
of the code is optimal.
|
||||
"""
|
||||
if user.op == 'placeholder':
|
||||
if user.op == "placeholder":
|
||||
return
|
||||
if user.op == 'output':
|
||||
body.append('\n')
|
||||
if user.op == "output":
|
||||
body.append("\n")
|
||||
return
|
||||
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||
if len(nodes_to_delete):
|
||||
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
|
||||
body.append(f'; {to_delete_str}\n')
|
||||
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"])
|
||||
body.append(f"; {to_delete_str}\n")
|
||||
else:
|
||||
body.append('\n')
|
||||
body.append("\n")
|
||||
|
||||
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||
def emit_node(node: Node, body):
|
||||
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
|
||||
if node.op == 'placeholder':
|
||||
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}"
|
||||
if node.op == "placeholder":
|
||||
assert isinstance(node.target, str)
|
||||
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}'
|
||||
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
|
||||
raw_name = node.target.replace('*', '')
|
||||
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}"
|
||||
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}")
|
||||
raw_name = node.target.replace("*", "")
|
||||
if raw_name != repr(node):
|
||||
body.append(f'{repr(node)} = {raw_name}\n')
|
||||
body.append(f"{repr(node)} = {raw_name}\n")
|
||||
return
|
||||
elif node.op == 'call_method':
|
||||
elif node.op == "call_method":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
|
||||
f'({_format_args(node.args[1:], node.kwargs)})')
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
||||
f"({_format_args(node.args[1:], node.kwargs)})"
|
||||
)
|
||||
return
|
||||
elif node.op == 'call_function':
|
||||
elif node.op == "call_function":
|
||||
assert callable(node.target)
|
||||
# pretty print operators
|
||||
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods:
|
||||
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods:
|
||||
assert isinstance(node.args, tuple)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}')
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
||||
)
|
||||
return
|
||||
|
||||
# pretty print inplace operators; required for jit.script to work properly
|
||||
# not currently supported in normal FX graphs, but generated by torchdynamo
|
||||
if node.target.__module__ == '_operator' and node.target.__name__ in inplace_methods:
|
||||
body.append(f'{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; '
|
||||
f'{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}')
|
||||
if node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods:
|
||||
body.append(
|
||||
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
||||
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
|
||||
)
|
||||
return
|
||||
|
||||
qualified_name = _get_qualified_name(node.target)
|
||||
global_name = add_global(qualified_name, node.target)
|
||||
# special case for getattr: node.args could be 2-argument or 3-argument
|
||||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
||||
if global_name == 'getattr' and \
|
||||
isinstance(node.args, tuple) and \
|
||||
isinstance(node.args[1], str) and \
|
||||
node.args[1].isidentifier() and \
|
||||
len(node.args) == 2:
|
||||
if (
|
||||
global_name == "getattr"
|
||||
and isinstance(node.args, tuple)
|
||||
and isinstance(node.args[1], str)
|
||||
and node.args[1].isidentifier()
|
||||
and len(node.args) == 2
|
||||
):
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}')
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
||||
)
|
||||
return
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
|
||||
if node.meta.get('is_wrapped', False):
|
||||
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
if node.meta.get("is_wrapped", False):
|
||||
wrapped_fns.setdefault(global_name)
|
||||
return
|
||||
elif node.op == 'call_module':
|
||||
elif node.op == "call_module":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
return
|
||||
elif node.op == 'get_attr':
|
||||
elif node.op == "get_attr":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
|
||||
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}")
|
||||
return
|
||||
elif node.op == 'output':
|
||||
elif node.op == "output":
|
||||
if node.type is not None:
|
||||
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
||||
body.append(self.generate_output(node.args[0]))
|
||||
return
|
||||
raise NotImplementedError(f'node: {node.op} {node.target}')
|
||||
raise NotImplementedError(f"node: {node.op} {node.target}")
|
||||
|
||||
# Modified for activation checkpointing
|
||||
ckpt_func = []
|
||||
|
||||
# if any node has a list of labels for activation_checkpoint, we
|
||||
# will use nested type of activation checkpoint codegen
|
||||
if any(isinstance(node.meta.get('activation_checkpoint', None), Iterable) for node in nodes):
|
||||
if any(isinstance(node.meta.get("activation_checkpoint", None), Iterable) for node in nodes):
|
||||
emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
||||
else:
|
||||
emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
||||
@@ -820,13 +833,13 @@ if CODEGEN_AVAILABLE:
|
||||
# If the Graph has no non-placeholder nodes, no lines for the body
|
||||
# have been emitted. To continue to have valid Python code, emit a
|
||||
# single pass statement
|
||||
body.append('pass\n')
|
||||
body.append("pass\n")
|
||||
|
||||
if len(wrapped_fns) > 0:
|
||||
wrap_name = add_global('wrap', torch.fx.wrap)
|
||||
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
wrap_name = add_global("wrap", torch.fx.wrap)
|
||||
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
else:
|
||||
wrap_stmts = ''
|
||||
wrap_stmts = ""
|
||||
|
||||
if self._body_transformer:
|
||||
body = self._body_transformer(body)
|
||||
@@ -837,11 +850,11 @@ if CODEGEN_AVAILABLE:
|
||||
# as we need colossalai.utils.checkpoint, we need to import colossalai
|
||||
# in forward function
|
||||
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
||||
prologue = ''.join(ckpt_func) + prologue
|
||||
prologue = "".join(ckpt_func) + prologue
|
||||
prologue = prologue
|
||||
|
||||
code = ''.join(body)
|
||||
code = '\n'.join(' ' + line for line in code.split('\n'))
|
||||
code = "".join(body)
|
||||
code = "\n".join(" " + line for line in code.split("\n"))
|
||||
fn_code = f"""
|
||||
{wrap_stmts}
|
||||
{prologue}
|
||||
@@ -861,7 +874,7 @@ else:
|
||||
wrapped_fns: Dict[str, None] = {}
|
||||
|
||||
# Wrap string in list to pass by reference
|
||||
maybe_return_annotation: List[str] = ['']
|
||||
maybe_return_annotation: List[str] = [""]
|
||||
|
||||
def add_global(name_hint: str, obj: Any):
|
||||
"""Add an obj to be tracked as a global.
|
||||
@@ -869,7 +882,7 @@ else:
|
||||
Graph, like functions or types.
|
||||
Returns: the global name that should be used to reference 'obj' in generated source.
|
||||
"""
|
||||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
||||
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
||||
# HACK: workaround for how torch custom ops are registered. We
|
||||
# can't import them like normal modules so they must retain their
|
||||
# fully qualified name.
|
||||
@@ -894,12 +907,12 @@ else:
|
||||
def type_repr(o: Any):
|
||||
if o == ():
|
||||
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
||||
return '()'
|
||||
return "()"
|
||||
|
||||
typename = _type_repr(o)
|
||||
|
||||
# This is a generic type, e.g. typing.List[torch.Tensor]
|
||||
if hasattr(o, '__origin__'):
|
||||
if hasattr(o, "__origin__"):
|
||||
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
||||
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
||||
|
||||
@@ -934,84 +947,94 @@ else:
|
||||
not used in the remainder of the code are freed and the memory usage
|
||||
of the code is optimal.
|
||||
"""
|
||||
if user.op == 'placeholder':
|
||||
if user.op == "placeholder":
|
||||
return
|
||||
if user.op == 'output':
|
||||
body.append('\n')
|
||||
if user.op == "output":
|
||||
body.append("\n")
|
||||
return
|
||||
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||
if len(nodes_to_delete):
|
||||
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
|
||||
body.append(f'; {to_delete_str}\n')
|
||||
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"])
|
||||
body.append(f"; {to_delete_str}\n")
|
||||
else:
|
||||
body.append('\n')
|
||||
body.append("\n")
|
||||
|
||||
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||
def emit_node(node: Node, body):
|
||||
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
|
||||
if node.op == 'placeholder':
|
||||
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}"
|
||||
if node.op == "placeholder":
|
||||
assert isinstance(node.target, str)
|
||||
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}'
|
||||
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
|
||||
raw_name = node.target.replace('*', '')
|
||||
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}"
|
||||
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}")
|
||||
raw_name = node.target.replace("*", "")
|
||||
if raw_name != repr(node):
|
||||
body.append(f'{repr(node)} = {raw_name}\n')
|
||||
body.append(f"{repr(node)} = {raw_name}\n")
|
||||
return
|
||||
elif node.op == 'call_method':
|
||||
elif node.op == "call_method":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}'
|
||||
f'({_format_args(node.args[1:], node.kwargs)})')
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
||||
f"({_format_args(node.args[1:], node.kwargs)})"
|
||||
)
|
||||
return
|
||||
elif node.op == 'call_function':
|
||||
elif node.op == "call_function":
|
||||
assert callable(node.target)
|
||||
# pretty print operators
|
||||
if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods:
|
||||
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods:
|
||||
assert isinstance(node.args, tuple)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}')
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
||||
)
|
||||
return
|
||||
qualified_name = _get_qualified_name(node.target)
|
||||
global_name = add_global(qualified_name, node.target)
|
||||
# special case for getattr: node.args could be 2-argument or 3-argument
|
||||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
||||
if global_name == 'getattr' and \
|
||||
isinstance(node.args, tuple) and \
|
||||
isinstance(node.args[1], str) and \
|
||||
node.args[1].isidentifier() and \
|
||||
len(node.args) == 2:
|
||||
if (
|
||||
global_name == "getattr"
|
||||
and isinstance(node.args, tuple)
|
||||
and isinstance(node.args[1], str)
|
||||
and node.args[1].isidentifier()
|
||||
and len(node.args) == 2
|
||||
):
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}')
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
||||
)
|
||||
return
|
||||
body.append(
|
||||
f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
|
||||
if node.meta.get('is_wrapped', False):
|
||||
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
if node.meta.get("is_wrapped", False):
|
||||
wrapped_fns.setdefault(global_name)
|
||||
return
|
||||
elif node.op == 'call_module':
|
||||
elif node.op == "call_module":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
||||
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
return
|
||||
elif node.op == 'get_attr':
|
||||
elif node.op == "get_attr":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
|
||||
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}")
|
||||
return
|
||||
elif node.op == 'output':
|
||||
elif node.op == "output":
|
||||
if node.type is not None:
|
||||
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
||||
if self._pytree_info is None:
|
||||
body.append(f'return {repr(node.args[0])}')
|
||||
body.append(f"return {repr(node.args[0])}")
|
||||
else:
|
||||
body.append(f'return pytree.tree_unflatten({repr(node.args[0])}, self._out_spec)')
|
||||
body.append(f"return pytree.tree_unflatten({repr(node.args[0])}, self._out_spec)")
|
||||
return
|
||||
raise NotImplementedError(f'node: {node.op} {node.target}')
|
||||
raise NotImplementedError(f"node: {node.op} {node.target}")
|
||||
|
||||
# Modified for activation checkpointing
|
||||
ckpt_func = []
|
||||
|
||||
# if any node has a list of labels for activation_checkpoint, we
|
||||
# will use nested type of activation checkpoint codegen
|
||||
if any(isinstance(node.meta.get('activation_checkpoint', None), Iterable) for node in self.nodes):
|
||||
if any(isinstance(node.meta.get("activation_checkpoint", None), Iterable) for node in self.nodes):
|
||||
emit_code_with_nested_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values)
|
||||
else:
|
||||
emit_code_with_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values)
|
||||
@@ -1020,33 +1043,34 @@ else:
|
||||
# If the Graph has no non-placeholder nodes, no lines for the body
|
||||
# have been emitted. To continue to have valid Python code, emit a
|
||||
# single pass statement
|
||||
body.append('pass\n')
|
||||
body.append("pass\n")
|
||||
if self._pytree_info is not None:
|
||||
orig_args = self._pytree_info.orig_args
|
||||
has_orig_self = (orig_args[0] == 'self')
|
||||
has_orig_self = orig_args[0] == "self"
|
||||
if has_orig_self:
|
||||
free_vars.insert(0, 'self')
|
||||
if len(free_vars) > 0: # pytree has placeholders in it
|
||||
free_vars.insert(0, "self")
|
||||
if len(free_vars) > 0: # pytree has placeholders in it
|
||||
body.insert(
|
||||
0,
|
||||
f"{', '.join(free_vars)}, = fx_pytree.tree_flatten_spec([{', '.join(orig_args)}], self._in_spec)\n")
|
||||
f"{', '.join(free_vars)}, = fx_pytree.tree_flatten_spec([{', '.join(orig_args)}], self._in_spec)\n",
|
||||
)
|
||||
else:
|
||||
orig_args = free_vars
|
||||
|
||||
if len(wrapped_fns) > 0:
|
||||
wrap_name = add_global('wrap', torch.fx.wrap)
|
||||
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
wrap_name = add_global("wrap", torch.fx.wrap)
|
||||
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
else:
|
||||
wrap_stmts = ''
|
||||
wrap_stmts = ""
|
||||
|
||||
ckpt_func = ''.join(ckpt_func)
|
||||
ckpt_func = "".join(ckpt_func)
|
||||
|
||||
# If the original function didn't have self as its first argument, we
|
||||
# would have added it.
|
||||
if len(orig_args) == 0 or orig_args[0] != 'self':
|
||||
orig_args.insert(0, 'self')
|
||||
code = ''.join(body)
|
||||
code = '\n'.join(' ' + line for line in code.split('\n'))
|
||||
if len(orig_args) == 0 or orig_args[0] != "self":
|
||||
orig_args.insert(0, "self")
|
||||
code = "".join(body)
|
||||
code = "\n".join(" " + line for line in code.split("\n"))
|
||||
|
||||
# as we need colossalai.utils.checkpoint, we need to import colossalai
|
||||
# in forward function
|
||||
|
Reference in New Issue
Block a user