mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-27 04:33:04 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -4,4 +4,4 @@ from .embedding import *
|
||||
from .linear import *
|
||||
from .normalization import *
|
||||
from .pooling import *
|
||||
from .rnn import *
|
||||
from .rnn import *
|
||||
|
@@ -10,4 +10,4 @@ from ...registry import meta_patched_module
|
||||
@meta_patched_module.register(torch.nn.ReLU6)
|
||||
@meta_patched_module.register(torch.nn.PReLU)
|
||||
def torch_nn_non_linear_act(self, input):
|
||||
return torch.empty(input.shape, device='meta')
|
||||
return torch.empty(input.shape, device="meta")
|
||||
|
@@ -11,13 +11,14 @@ def torch_nn_conv1d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
|
||||
l_in = input.shape[-1]
|
||||
c_out = self.out_channels
|
||||
l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
l_out = math.floor(
|
||||
(l_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
|
||||
)
|
||||
result_shape = input.shape[:-2] + (
|
||||
c_out,
|
||||
l_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.Conv2d)
|
||||
@@ -26,16 +27,18 @@ def torch_nn_conv2d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d
|
||||
h_in, w_in = input.shape[-2:]
|
||||
c_out = self.out_channels
|
||||
h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
|
||||
h_out = math.floor(
|
||||
(h_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
|
||||
)
|
||||
w_out = math.floor(
|
||||
(w_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1
|
||||
)
|
||||
result_shape = input.shape[:-3] + (
|
||||
c_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.Conv3d)
|
||||
@@ -44,19 +47,22 @@ def torch_nn_conv3d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
c_out = self.out_channels
|
||||
d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
|
||||
h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
|
||||
w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] *
|
||||
(self.kernel_size[2] - 1) - 1) / self.stride[2] + 1)
|
||||
d_out = math.floor(
|
||||
(d_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
|
||||
)
|
||||
h_out = math.floor(
|
||||
(h_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1
|
||||
)
|
||||
w_out = math.floor(
|
||||
(w_in + 2 * self.padding[2] - self.dilation[2] * (self.kernel_size[2] - 1) - 1) / self.stride[2] + 1
|
||||
)
|
||||
result_shape = input.shape[:-4] + (
|
||||
c_out,
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.ConvTranspose1d)
|
||||
@@ -65,13 +71,18 @@ def torch_nn_convtranspose1d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
|
||||
l_in = input.shape[-1]
|
||||
c_out = self.out_channels
|
||||
l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||
l_out = math.floor(
|
||||
(l_in - 1) * self.stride[0]
|
||||
- 2 * self.padding[0]
|
||||
+ self.dilation[0] * (self.kernel_size[0] - 1)
|
||||
+ self.output_padding[0]
|
||||
+ 1
|
||||
)
|
||||
result_shape = input.shape[:-2] + (
|
||||
c_out,
|
||||
l_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.ConvTranspose2d)
|
||||
@@ -80,16 +91,26 @@ def torch_nn_convtranspose2d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
|
||||
h_in, w_in = input.shape[-2:]
|
||||
c_out = self.out_channels
|
||||
h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||
w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
|
||||
h_out = math.floor(
|
||||
(h_in - 1) * self.stride[0]
|
||||
- 2 * self.padding[0]
|
||||
+ self.dilation[0] * (self.kernel_size[0] - 1)
|
||||
+ self.output_padding[0]
|
||||
+ 1
|
||||
)
|
||||
w_out = math.floor(
|
||||
(w_in - 1) * self.stride[1]
|
||||
- 2 * self.padding[1]
|
||||
+ self.dilation[1] * (self.kernel_size[1] - 1)
|
||||
+ self.output_padding[1]
|
||||
+ 1
|
||||
)
|
||||
result_shape = input.shape[:-3] + (
|
||||
c_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.ConvTranspose3d)
|
||||
@@ -98,16 +119,31 @@ def torch_nn_convtranspose3d(self, input):
|
||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
c_out = self.out_channels
|
||||
d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||
h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
|
||||
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
|
||||
w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] *
|
||||
(self.kernel_size[2] - 1) + self.output_padding[2] + 1)
|
||||
d_out = math.floor(
|
||||
(d_in - 1) * self.stride[0]
|
||||
- 2 * self.padding[0]
|
||||
+ self.dilation[0] * (self.kernel_size[0] - 1)
|
||||
+ self.output_padding[0]
|
||||
+ 1
|
||||
)
|
||||
h_out = math.floor(
|
||||
(h_in - 1) * self.stride[1]
|
||||
- 2 * self.padding[1]
|
||||
+ self.dilation[1] * (self.kernel_size[1] - 1)
|
||||
+ self.output_padding[1]
|
||||
+ 1
|
||||
)
|
||||
w_out = math.floor(
|
||||
(w_in - 1) * self.stride[2]
|
||||
- 2 * self.padding[2]
|
||||
+ self.dilation[2] * (self.kernel_size[2] - 1)
|
||||
+ self.output_padding[2]
|
||||
+ 1
|
||||
)
|
||||
result_shape = input.shape[:-4] + (
|
||||
c_out,
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
@@ -6,4 +6,4 @@ from ...registry import meta_patched_module
|
||||
@meta_patched_module.register(torch.nn.Embedding)
|
||||
def torch_nn_embedding(self, input):
|
||||
result_shape = input.shape + (self.embedding_dim,)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
@@ -6,5 +6,7 @@ from ...registry import meta_patched_module
|
||||
@meta_patched_module.register(torch.nn.Linear)
|
||||
def torch_nn_linear(self, input):
|
||||
last_dim = input.shape[-1]
|
||||
assert last_dim == self.in_features, f'Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch'
|
||||
assert (
|
||||
last_dim == self.in_features
|
||||
), f"Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch"
|
||||
return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")
|
||||
|
@@ -23,6 +23,7 @@ def torch_nn_normalize(self, input):
|
||||
|
||||
try:
|
||||
import apex
|
||||
|
||||
meta_patched_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize)
|
||||
meta_patched_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize)
|
||||
meta_patched_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize)
|
||||
|
@@ -8,7 +8,7 @@ from ...registry import meta_patched_module
|
||||
@meta_patched_module.register(torch.nn.AvgPool1d)
|
||||
def torch_nn_avgpool1d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [2, 3], f"expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
l_in = input.shape[-1]
|
||||
|
||||
@@ -25,13 +25,13 @@ def torch_nn_avgpool1d(self, input):
|
||||
l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
||||
|
||||
result_shape = tuple(input.shape[:-1]) + (l_out,)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AvgPool2d)
|
||||
def torch_nn_avgpool2d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [3, 4], f"expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
h_in, w_in = input.shape[-2:]
|
||||
|
||||
@@ -52,13 +52,13 @@ def torch_nn_avgpool2d(self, input):
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AvgPool3d)
|
||||
def torch_nn_avgpool3d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [4, 5], f"expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
|
||||
@@ -81,13 +81,13 @@ def torch_nn_avgpool3d(self, input):
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool1d)
|
||||
def torch_nn_maxpool1d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [2, 3], f"expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
l_in = input.shape[-1]
|
||||
|
||||
@@ -105,13 +105,13 @@ def torch_nn_maxpool1d(self, input):
|
||||
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
|
||||
result_shape = tuple(input.shape[:-1]) + (l_out,)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool2d)
|
||||
def torch_nn_maxpool2d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [3, 4], f"expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
h_in, w_in = input.shape[-2:]
|
||||
|
||||
@@ -133,13 +133,13 @@ def torch_nn_maxpool2d(self, input):
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool3d)
|
||||
def torch_nn_maxpool3d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
||||
assert num_dim in [4, 5], f"expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions"
|
||||
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
|
||||
@@ -163,7 +163,7 @@ def torch_nn_maxpool3d(self, input):
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AdaptiveAvgPool1d)
|
||||
@@ -175,7 +175,7 @@ def torch_nn_adapative_pooling_1d(self, input):
|
||||
else:
|
||||
output_size = self.output_size
|
||||
result_shape = tuple(input.shape[:-1]) + output_size
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AdaptiveAvgPool2d)
|
||||
@@ -187,7 +187,7 @@ def torch_nn_adapative_pooling_2d(self, input):
|
||||
else:
|
||||
output_size = self.output_size
|
||||
result_shape = tuple(input.shape[:-2]) + output_size
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AdaptiveAvgPool3d)
|
||||
@@ -199,4 +199,4 @@ def torch_nn_adapative_pooling_3d(self, input):
|
||||
else:
|
||||
output_size = self.output_size
|
||||
result_shape = tuple(input.shape[:-3]) + output_size
|
||||
return torch.empty(result_shape, device='meta')
|
||||
return torch.empty(result_shape, device="meta")
|
||||
|
@@ -1,5 +1,3 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from ...registry import meta_patched_module
|
||||
@@ -8,9 +6,11 @@ from ...registry import meta_patched_module
|
||||
@meta_patched_module.register(torch.nn.GRU)
|
||||
@meta_patched_module.register(torch.nn.RNN)
|
||||
def torch_nn_rnn(self, input, hx):
|
||||
assert input.shape[
|
||||
-1] == self.input_size, f'Expected input to have input size {self.input_size} but got {input.shape[-1]} for the torch.nn.RNN patch'
|
||||
assert hx.shape[
|
||||
-1] == self.hidden_size, f'Expected hx to have hidden size {self.hidden_size} but got {hx.shape[-1]} for the torch.nn.RNN patch'
|
||||
assert (
|
||||
input.shape[-1] == self.input_size
|
||||
), f"Expected input to have input size {self.input_size} but got {input.shape[-1]} for the torch.nn.RNN patch"
|
||||
assert (
|
||||
hx.shape[-1] == self.hidden_size
|
||||
), f"Expected hx to have hidden size {self.hidden_size} but got {hx.shape[-1]} for the torch.nn.RNN patch"
|
||||
d = 2 if self.bidirectional else 1
|
||||
return torch.empty(input.shape[:-1] + (self.hidden_size * d,), device="meta"), hx
|
||||
|
Reference in New Issue
Block a user