[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -1,8 +1,10 @@
from .option import set_jit_fusion_options
from .bias_dropout_add import bias_dropout_add_fused_train, bias_dropout_add_fused_inference
from .bias_dropout_add import bias_dropout_add_fused_inference, bias_dropout_add_fused_train
from .bias_gelu import bias_gelu_impl
from .option import set_jit_fusion_options
__all__ = [
"bias_dropout_add_fused_train", "bias_dropout_add_fused_inference", "bias_gelu_impl",
"set_jit_fusion_options"
"bias_dropout_add_fused_train",
"bias_dropout_add_fused_inference",
"bias_gelu_impl",
"set_jit_fusion_options",
]

View File

@@ -1,5 +1,4 @@
import torch
from torch import Tensor
def bias_dropout_add(x, bias, residual, prob, training):
@@ -10,16 +9,14 @@ def bias_dropout_add(x, bias, residual, prob, training):
@torch.jit.script
def bias_dropout_add_fused_train(x: torch.Tensor,
bias: torch.Tensor,
residual: torch.Tensor,
prob: float) -> torch.Tensor:
def bias_dropout_add_fused_train(
x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float
) -> torch.Tensor:
return bias_dropout_add(x, bias, residual, prob, True)
@torch.jit.script
def bias_dropout_add_fused_inference(x: torch.Tensor,
bias: torch.Tensor,
residual: torch.Tensor,
prob: float) -> torch.Tensor:
def bias_dropout_add_fused_inference(
x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float
) -> torch.Tensor:
return bias_dropout_add(x, bias, residual, prob, False)

View File

@@ -29,7 +29,6 @@ def bias_gelu_back(g, bias, y):
class GeLUFunction(torch.autograd.Function):
@staticmethod
# bias is an optional argument
def forward(ctx, input, bias):

View File

@@ -10,15 +10,14 @@ JIT_OPTIONS_SET = False
def set_jit_fusion_options():
"""Set PyTorch JIT layer fusion options.
"""
"""Set PyTorch JIT layer fusion options."""
# LSG: the latest pytorch and CUDA versions may not support
# the following jit settings
global JIT_OPTIONS_SET
if JIT_OPTIONS_SET == False:
# flags required to enable jit fusion kernels
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10):
# nvfuser
torch._C._jit_set_profiling_executor(True)
@@ -38,12 +37,14 @@ def set_jit_fusion_options():
JIT_OPTIONS_SET = True
def warmup_jit_fusion(batch_size: int,
hidden_size: int,
seq_length: int = 512,
vocab_size: int = 32768,
dtype: torch.dtype = torch.float32):
""" Compile JIT functions before the main training steps """
def warmup_jit_fusion(
batch_size: int,
hidden_size: int,
seq_length: int = 512,
vocab_size: int = 32768,
dtype: torch.dtype = torch.float32,
):
"""Compile JIT functions before the main training steps"""
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())