[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -4,7 +4,6 @@
import random
import socket
from collections import Counter
from threading import local
from typing import Union
import numpy as np
@@ -95,8 +94,9 @@ class ParallelContext(metaclass=SingletonMeta):
@staticmethod
def _check_parallel_mode(parallel_mode: ParallelMode):
assert isinstance(parallel_mode, ParallelMode), \
f'expected the argument parallel_mode to be of enum ParallelMode, but got {type(parallel_mode)}'
assert isinstance(
parallel_mode, ParallelMode
), f"expected the argument parallel_mode to be of enum ParallelMode, but got {type(parallel_mode)}"
def get_global_rank(self):
"""Returns the global rank of the current device.
@@ -239,8 +239,10 @@ class ParallelContext(metaclass=SingletonMeta):
def is_pipeline_last_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self.virtual_pipeline_parallel_size \
is not None and self.virtual_pipeline_parallel_rank != self.virtual_pipeline_parallel_size - 1:
if (
self.virtual_pipeline_parallel_size is not None
and self.virtual_pipeline_parallel_rank != self.virtual_pipeline_parallel_size - 1
):
return False
return self.is_last_rank(ParallelMode.PIPELINE)
@@ -371,12 +373,12 @@ class ParallelContext(metaclass=SingletonMeta):
port (str): the master port for distributed training
"""
# initialize the default process group
init_method = f'tcp://[{host}]:{port}'
init_method = f"tcp://[{host}]:{port}"
dist.init_process_group(rank=rank, world_size=world_size, backend=backend, init_method=init_method)
# None will give the default global process group for pytorch dist operations
ranks = list(range(world_size))
cpu_group = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else None
cpu_group = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else None
self._register_dist(rank, world_size, dist.GroupMember.WORLD, cpu_group, ranks, ParallelMode.GLOBAL)
self.add_global_rank(ParallelMode.GLOBAL, rank)
@@ -398,10 +400,11 @@ class ParallelContext(metaclass=SingletonMeta):
pps = self.pipeline_parallel_size
tps = self.tensor_parallel_size
ws = self.world_size
assert ws == dps * pps * \
tps, f"Expected the world size {ws} to be equal to data" \
f" parallel size ({dps}) * pipeline parallel size " \
f"({pps}) * tensor parallel size ({tps})"
assert ws == dps * pps * tps, (
f"Expected the world size {ws} to be equal to data"
f" parallel size ({dps}) * pipeline parallel size "
f"({pps}) * tensor parallel size ({tps})"
)
def _set_parallel_size_from_config(self, config: dict, key: str, attr_name: str):
if key in config:
@@ -409,10 +412,11 @@ class ParallelContext(metaclass=SingletonMeta):
if isinstance(ele, int):
setattr(self, attr_name, ele)
elif isinstance(ele, dict):
setattr(self, attr_name, ele['size'])
setattr(self, attr_name, ele["size"])
else:
raise NotImplementedError(
f'{"Parallel configuration does not support this kind of argument, please use int or dict"}')
f'{"Parallel configuration does not support this kind of argument, please use int or dict"}'
)
def init_parallel_groups(self):
"""Initializes the parallel groups.
@@ -427,10 +431,10 @@ class ParallelContext(metaclass=SingletonMeta):
self.world_size = world_size
# set parallel size as attributes for global context
parallel_config = self.config.get('parallel', None)
parallel_config = self.config.get("parallel", None)
if parallel_config is not None:
self._set_parallel_size_from_config(parallel_config, 'pipeline', 'pipeline_parallel_size')
self._set_parallel_size_from_config(parallel_config, 'tensor', 'tensor_parallel_size')
self._set_parallel_size_from_config(parallel_config, "pipeline", "pipeline_parallel_size")
self._set_parallel_size_from_config(parallel_config, "tensor", "tensor_parallel_size")
# the user should not set the data parallel size manually
# instead, it should be calculated based on other parallel config
@@ -438,33 +442,33 @@ class ParallelContext(metaclass=SingletonMeta):
# get the tensor parallel mode and check
tensor_parallel_mode = None
if parallel_config is not None and 'tensor' in \
parallel_config and 'mode' in parallel_config['tensor']:
tensor_parallel_mode = parallel_config['tensor']['mode']
assert tensor_parallel_mode in ALLOWED_MODES, \
f"mode in the parallel config must be set to one of {ALLOWED_MODES}"
if parallel_config is not None and "tensor" in parallel_config and "mode" in parallel_config["tensor"]:
tensor_parallel_mode = parallel_config["tensor"]["mode"]
assert (
tensor_parallel_mode in ALLOWED_MODES
), f"mode in the parallel config must be set to one of {ALLOWED_MODES}"
env.mode = tensor_parallel_mode
self.check_sanity()
pg_init = []
# LSG: init data parallel process group for compatibility with other parallel module such as zero
pg_init.append(dict(type=INITIALIZER_MAPPING['data']))
pg_init.append(dict(type=INITIALIZER_MAPPING["data"]))
# LSG: init model parallel process group for compatibility with amp and clip grad
pg_init.append(dict(type=INITIALIZER_MAPPING['model']))
pg_init.append(dict(type=INITIALIZER_MAPPING["model"]))
if self.pipeline_parallel_size > 1:
pg_init.append(dict(type=INITIALIZER_MAPPING['pipeline']))
pg_init.append(dict(type=INITIALIZER_MAPPING['tensor']))
pg_init.append(dict(type=INITIALIZER_MAPPING["pipeline"]))
pg_init.append(dict(type=INITIALIZER_MAPPING["tensor"]))
# init specific tensor parallel group
if tensor_parallel_mode is not None:
tensor_parallel_cfg = parallel_config['tensor'].copy()
tensor_parallel_cfg = parallel_config["tensor"].copy()
# remove duplicate parameters
tensor_parallel_cfg.pop('mode')
tensor_parallel_cfg.pop('size')
tensor_parallel_cfg.pop("mode")
tensor_parallel_cfg.pop("size")
# add this config to initialize later
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
@@ -472,11 +476,16 @@ class ParallelContext(metaclass=SingletonMeta):
# run initialization of different process groups
for initializer_cfg in pg_init:
cfg = initializer_cfg.copy()
initializer_type = cfg.pop('type')
initializer = DIST_GROUP_INITIALIZER.get_module(initializer_type)(rank, world_size, self.config,
self.data_parallel_size,
self.pipeline_parallel_size,
self.tensor_parallel_size, **cfg)
initializer_type = cfg.pop("type")
initializer = DIST_GROUP_INITIALIZER.get_module(initializer_type)(
rank,
world_size,
self.config,
self.data_parallel_size,
self.pipeline_parallel_size,
self.tensor_parallel_size,
**cfg,
)
parallel_setting = initializer.init_dist_group()
if isinstance(parallel_setting, list):
for args in parallel_setting:
@@ -497,8 +506,7 @@ class ParallelContext(metaclass=SingletonMeta):
return parallel_mode in self._groups
def destroy(self):
"""Destroys the current distributed parallel environment.
"""
"""Destroys the current distributed parallel environment."""
for mode, group in self._groups.items():
if mode is not ParallelMode.GLOBAL:
dist.destroy_process_group(group)
@@ -519,7 +527,7 @@ class ParallelContext(metaclass=SingletonMeta):
torch.cuda.set_device(device_ordinal)
if self._verbose:
self._logger.info(f'process rank {global_rank} is bound to device {device_ordinal}')
self._logger.info(f"process rank {global_rank} is bound to device {device_ordinal}")
def set_seed(self, seed: int):
"""Sets seeds for all random libraries.
@@ -552,21 +560,25 @@ class ParallelContext(metaclass=SingletonMeta):
set_mode(ParallelMode.DATA)
seeds = get_seeds()
seed_str = ', '.join([f'{k}: {v}' for k, v in seeds.items()])
seed_str = ", ".join([f"{k}: {v}" for k, v in seeds.items()])
if self._verbose:
self._logger.info(f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, {seed_str},"
f"the default parallel seed is {ParallelMode.DATA}.")
self._logger.info(
f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, {seed_str},"
f"the default parallel seed is {ParallelMode.DATA}."
)
else:
if self._verbose:
self._logger.info(
f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, pytorch: {seed}",
ranks=[0])
ranks=[0],
)
self._logger.info(
'WARNING: CUDA is not available, thus CUDA RNG cannot be used to track CUDA random number states',
ranks=[0])
"WARNING: CUDA is not available, thus CUDA RNG cannot be used to track CUDA random number states",
ranks=[0],
)
def set_virtual_pipeline_parallel_size(self, size):
self.virtual_pipeline_parallel_size = size

View File

@@ -6,44 +6,43 @@ from enum import Enum
# parallel modes
class ParallelMode(Enum):
"""This is an enumeration class containing all possible parallel modes.
"""
"""This is an enumeration class containing all possible parallel modes."""
GLOBAL = 'global'
GLOBAL = "global"
# common parallel
DATA = 'data'
DATA = "data"
# model parallel - containing tensor and pipeline parallel groups
# this is added to facilitate amp and grad clipping in hybrid parallel
MODEL = 'model'
MODEL = "model"
# pipeline parallel
PIPELINE = 'pipe'
PIPELINE = "pipe"
# containing all ranks in tensor parallel
TENSOR = 'tensor'
TENSOR = "tensor"
# sequence parallel
SEQUENCE = 'sequence'
SEQUENCE_DP = 'sequence_dp'
SEQUENCE = "sequence"
SEQUENCE_DP = "sequence_dp"
# 1D Parallel
PARALLEL_1D = '1d'
PARALLEL_1D = "1d"
# 2D parallel
PARALLEL_2D_ROW = '2d_row'
PARALLEL_2D_COL = '2d_col'
PARALLEL_2D_ROW = "2d_row"
PARALLEL_2D_COL = "2d_col"
# 3D parallel
PARALLEL_3D_INPUT = '3d_input'
PARALLEL_3D_WEIGHT = '3d_weight'
PARALLEL_3D_OUTPUT = '3d_output'
PARALLEL_3D_INPUT = "3d_input"
PARALLEL_3D_WEIGHT = "3d_weight"
PARALLEL_3D_OUTPUT = "3d_output"
PARALLEL_3D_INPUT_X_WEIGHT = "3d_input_x_weight"
PARALLEL_3D_OUTPUT_X_WEIGHT = "3d_output_x_weight"
# 2.5D parallel
PARALLEL_2P5D_ROW = '2p5d_row'
PARALLEL_2P5D_COL = '2p5d_col'
PARALLEL_2P5D_DEP = '2p5d_dep'
PARALLEL_2P5D_XZ = '2p5d_xz'
PARALLEL_2P5D_ROW = "2p5d_row"
PARALLEL_2P5D_COL = "2p5d_col"
PARALLEL_2P5D_DEP = "2p5d_dep"
PARALLEL_2P5D_XZ = "2p5d_xz"

View File

@@ -10,6 +10,14 @@ from .initializer_tensor import Initializer_Tensor
from .process_group_initializer import ProcessGroupInitializer
__all__ = [
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline', 'Initializer_Data', 'Initializer_2p5D',
'Initializer_2D', 'Initializer_3D', 'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
"Initializer_Tensor",
"Initializer_Sequence",
"Initializer_Pipeline",
"Initializer_Data",
"Initializer_2p5D",
"Initializer_2D",
"Initializer_3D",
"Initializer_1D",
"ProcessGroupInitializer",
"Initializer_Model",
]

View File

@@ -45,7 +45,7 @@ class Initializer_1D(ProcessGroupInitializer):
for i in range(self.num_group):
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)

View File

@@ -14,9 +14,10 @@ def _check_summa_env_var(summa_dim):
env_summa_dim = env.summa_dim
if env_summa_dim:
assert int(env_summa_dim) == summa_dim, \
'SUMMA_DIM has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_summa_dim) == summa_dim, (
"SUMMA_DIM has been set in the current environment and "
"does not match with the value passed to this initialized"
)
else:
env.summa_dim = summa_dim
@@ -57,7 +58,7 @@ class Initializer_2D_Row(ProcessGroupInitializer):
for j in range(self.summa_dim):
ranks = [i * self.tensor_parallel_size + j * self.summa_dim + k for k in range(self.summa_dim)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -106,7 +107,7 @@ class Initializer_2D_Col(ProcessGroupInitializer):
for j in range(self.summa_dim):
ranks = [i * self.tensor_parallel_size + j + k * self.summa_dim for k in range(self.summa_dim)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -137,8 +138,9 @@ class Initializer_2D(ProcessGroupInitializer):
self.num_group = self.world_size // self.tensor_parallel_size
self.summa_dim = int(math.sqrt(self.tensor_parallel_size))
assert self.tensor_parallel_size == self.summa_dim ** 2, \
"2D summa dim should equal to tensor parallel size ^ 0.5"
assert (
self.tensor_parallel_size == self.summa_dim**2
), "2D summa dim should equal to tensor parallel size ^ 0.5"
_check_summa_env_var(self.summa_dim)
self.col_initializer = Initializer_2D_Col(self.num_group, self.summa_dim, *args, **kwargs)

View File

@@ -19,12 +19,14 @@ def _check_tesseract_env_var(tesseract_dim: int, tesseract_dep: int):
env_tesseract_dep = env.tesseract_dep
if env_tesseract_dim and env_tesseract_dep:
assert int(env_tesseract_dim) == tesseract_dim, \
'TESSERACT_DIM has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_tesseract_dep) == tesseract_dep, \
'TESSERACT_DEP has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_tesseract_dim) == tesseract_dim, (
"TESSERACT_DIM has been set in the current environment and "
"does not match with the value passed to this initialized"
)
assert int(env_tesseract_dep) == tesseract_dep, (
"TESSERACT_DEP has been set in the current environment and "
"does not match with the value passed to this initialized"
)
else:
env.tesseract_dim = tesseract_dim
env.tesseract_dep = tesseract_dep
@@ -50,8 +52,9 @@ class Initializer_2p5D_ROW(ProcessGroupInitializer):
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
assert (
self.tensor_parallel_size == self.tesseract_dim**2 * self.tesseract_dep
), "Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
"""Initialize 2.5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
@@ -75,7 +78,7 @@ class Initializer_2p5D_ROW(ProcessGroupInitializer):
for i in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -129,7 +132,7 @@ class Initializer_2p5D_Col(ProcessGroupInitializer):
for j in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -183,7 +186,7 @@ class Initializer_2p5D_Dep(ProcessGroupInitializer):
for k in range(self.tesseract_dep)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -238,7 +241,7 @@ class Initializer_2p5D_XZ(ProcessGroupInitializer):
for j in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -265,16 +268,25 @@ class Initializer_2p5D(ProcessGroupInitializer):
depth (int): The depth of 2.5d parallel.
"""
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
tensor_parallel_size: int, depth: int):
def __init__(
self,
rank: int,
world_size: int,
config: Config,
data_parallel_size: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
depth: int,
):
args = (rank, world_size, config, data_parallel_size, pipeline_parallel_size, tensor_parallel_size)
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
self.tesseract_dep = depth
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
assert (
self.tensor_parallel_size == self.tesseract_dim**2 * self.tesseract_dep
), "2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
@@ -293,6 +305,6 @@ class Initializer_2p5D(ProcessGroupInitializer):
self.col_initializer.init_dist_group(),
self.row_initializer.init_dist_group(),
self.dep_initializer.init_dist_group(),
self.xz_initializer.init_dist_group()
self.xz_initializer.init_dist_group(),
]
return parallel_setting

View File

@@ -17,9 +17,10 @@ def _check_depth_env_var(depth):
env_depth = env.depth_3d
if env_depth:
assert int(env_depth) == depth, \
'DEPTH_3D has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_depth) == depth, (
"DEPTH_3D has been set in the current environment and "
"does not match with the value passed to this initialized"
)
else:
env.depth_3d = depth
@@ -63,7 +64,7 @@ class Initializer_3D_Input(ProcessGroupInitializer):
for k in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -114,7 +115,7 @@ class Initializer_3D_Weight(ProcessGroupInitializer):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -165,7 +166,7 @@ class Initializer_3D_Output(ProcessGroupInitializer):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -219,7 +220,7 @@ class Initializer_3D_InputxWeight(ProcessGroupInitializer):
for i in range(self.depth)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -273,7 +274,7 @@ class Initializer_3D_OutputxWeight(ProcessGroupInitializer):
for i in range(self.depth)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -302,8 +303,9 @@ class Initializer_3D(ProcessGroupInitializer):
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
assert self.tensor_parallel_size == self.depth ** 3, \
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
assert (
self.tensor_parallel_size == self.depth**3
), f"3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})"
_check_depth_env_var(self.depth)
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
@@ -324,6 +326,6 @@ class Initializer_3D(ProcessGroupInitializer):
self.weight_initializer.init_dist_group(),
self.output_initializer.init_dist_group(),
self.input_x_weight_initializer.init_dist_group(),
self.output_x_weight_initializer.init_dist_group()
self.output_x_weight_initializer.init_dist_group(),
]
return parallel_setting

View File

@@ -43,7 +43,7 @@ class Initializer_Data(ProcessGroupInitializer):
for i in range(self.num_data_parallel_group):
ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)

View File

@@ -45,7 +45,7 @@ class Initializer_Model(ProcessGroupInitializer):
for i in range(self.num_group):
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)

View File

@@ -38,10 +38,11 @@ class Initializer_Pipeline(ProcessGroupInitializer):
for i in range(self.data_parallel_size):
for j in range(self.pipeline_stage_size):
pipe_ranks = list(
range(i * self.data_group_size + j, (i + 1) * self.data_group_size, self.pipeline_stage_size))
range(i * self.data_group_size + j, (i + 1) * self.data_group_size, self.pipeline_stage_size)
)
pipe_group_size = len(pipe_ranks)
pipe_group = dist.new_group(pipe_ranks)
group_cpu = dist.new_group(pipe_ranks, backend='gloo') if dist.get_backend() != 'gloo' else pipe_group
group_cpu = dist.new_group(pipe_ranks, backend="gloo") if dist.get_backend() != "gloo" else pipe_group
if self.rank in pipe_ranks:
local_rank = pipe_ranks.index(self.rank)
@@ -50,7 +51,16 @@ class Initializer_Pipeline(ProcessGroupInitializer):
cpu_group = group_cpu
ranks_in_group = pipe_ranks
dist_settings.append(
tuple((local_rank, group_world_size, process_group, cpu_group, ranks_in_group,
ParallelMode.PIPELINE)))
tuple(
(
local_rank,
group_world_size,
process_group,
cpu_group,
ranks_in_group,
ParallelMode.PIPELINE,
)
)
)
return dist_settings

View File

@@ -46,7 +46,7 @@ class Initializer_Sequence_DP(ProcessGroupInitializer):
for i in range(self.num_group):
ranks = [i * self.dp_size + j for j in range(self.dp_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
@@ -91,8 +91,14 @@ class Initializer_Sequence(ProcessGroupInitializer):
parallel_setting = []
local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode = \
self._sequence_initializer.init_dist_group()
(
local_rank,
group_world_size,
process_group,
cpu_group,
ranks_in_group,
mode,
) = self._sequence_initializer.init_dist_group()
# change mode to sequence
mode = ParallelMode.SEQUENCE

View File

@@ -43,7 +43,7 @@ class Initializer_Tensor(ProcessGroupInitializer):
for i in range(self.num_tensor_parallel_group):
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)

View File

@@ -18,8 +18,15 @@ class ProcessGroupInitializer(ABC):
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
tensor_parallel_size: int):
def __init__(
self,
rank: int,
world_size: int,
config: Config,
data_parallel_size: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
):
self.rank = rank
self.world_size = world_size
self.data_parallel_size = data_parallel_size

View File

@@ -13,6 +13,15 @@ from ._helper import (
)
__all__ = [
'seed', 'set_mode', 'with_seed', 'add_seed', 'get_seeds', 'get_states', 'get_current_mode', 'set_seed_states',
'sync_states', 'moe_set_seed', 'reset_seeds'
"seed",
"set_mode",
"with_seed",
"add_seed",
"get_seeds",
"get_states",
"get_current_mode",
"set_seed_states",
"sync_states",
"moe_set_seed",
"reset_seeds",
]

View File

@@ -100,7 +100,7 @@ def sync_states():
@contextmanager
def seed(parallel_mode: ParallelMode):
""" A context for seed switch
"""A context for seed switch
Examples:
@@ -162,6 +162,7 @@ def with_seed(func, parallel_mode: ParallelMode):
def moe_set_seed(seed):
if torch.cuda.is_available():
from colossalai.legacy.core import global_context as gpc
global_rank = gpc.get_global_rank()
diff_seed = seed + global_rank
add_seed(ParallelMode.TENSOR, diff_seed, True)

View File

@@ -42,7 +42,7 @@ class SeedManager:
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
"""
assert parallel_mode in self._seed_states, f'Parallel mode {parallel_mode} is not found in the seed manager'
assert parallel_mode in self._seed_states, f"Parallel mode {parallel_mode} is not found in the seed manager"
self._seed_states[parallel_mode] = state
def set_mode(self, parallel_mode: ParallelMode):
@@ -71,9 +71,9 @@ class SeedManager:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.legacy.context.ParallelMode`
or the seed for `parallel_mode` has been added.
"""
assert isinstance(parallel_mode, ParallelMode), 'A valid ParallelMode must be provided'
assert isinstance(parallel_mode, ParallelMode), "A valid ParallelMode must be provided"
if overwrite is False:
assert parallel_mode not in self._seed_states, f'The seed for {parallel_mode} has been added'
assert parallel_mode not in self._seed_states, f"The seed for {parallel_mode} has been added"
elif parallel_mode in self._seed_states:
print(f"Warning: {parallel_mode} seed has been overwritten.", flush=True)