mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -15,25 +15,25 @@ from ..vanilla import VanillaPatchEmbedding
|
||||
from ._utils import ColossalaiModule
|
||||
|
||||
_parallel_embedding = {
|
||||
'1d': Embedding1D,
|
||||
'2d': Embedding2D,
|
||||
'2.5d': Embedding2p5D,
|
||||
'3d': Embedding3D,
|
||||
"1d": Embedding1D,
|
||||
"2d": Embedding2D,
|
||||
"2.5d": Embedding2p5D,
|
||||
"3d": Embedding3D,
|
||||
}
|
||||
|
||||
_vocab_parallel_embedding = {
|
||||
'1d': VocabParallelEmbedding1D,
|
||||
'2d': VocabParallelEmbedding2D,
|
||||
'2.5d': VocabParallelEmbedding2p5D,
|
||||
'3d': VocabParallelEmbedding3D
|
||||
"1d": VocabParallelEmbedding1D,
|
||||
"2d": VocabParallelEmbedding2D,
|
||||
"2.5d": VocabParallelEmbedding2p5D,
|
||||
"3d": VocabParallelEmbedding3D,
|
||||
}
|
||||
|
||||
_parallel_patchembedding = {
|
||||
None: VanillaPatchEmbedding,
|
||||
'1d': PatchEmbedding1D,
|
||||
'2d': PatchEmbedding2D,
|
||||
'2.5d': PatchEmbedding2p5D,
|
||||
'3d': PatchEmbedding3D
|
||||
"1d": PatchEmbedding1D,
|
||||
"2d": PatchEmbedding2D,
|
||||
"2.5d": PatchEmbedding2p5D,
|
||||
"3d": PatchEmbedding3D,
|
||||
}
|
||||
|
||||
|
||||
@@ -67,19 +67,24 @@ class Embedding(ColossalaiModule):
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
padding_idx: int = None,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.normal_(),
|
||||
vocab_parallel_limit: int = 2048,
|
||||
*args,
|
||||
**kwargs) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
padding_idx: int = None,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.normal_(),
|
||||
vocab_parallel_limit: int = 2048,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
if tensor_parallel is None:
|
||||
embed = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx, *args,
|
||||
**kwargs).to(dtype).to(get_current_device())
|
||||
embed = (
|
||||
nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx, *args, **kwargs)
|
||||
.to(dtype)
|
||||
.to(get_current_device())
|
||||
)
|
||||
weight_initializer(embed.weight, fan_in=num_embeddings, fan_out=embedding_dim)
|
||||
elif num_embeddings <= vocab_parallel_limit:
|
||||
embed = _parallel_embedding[tensor_parallel](
|
||||
@@ -135,7 +140,7 @@ class PatchEmbedding(ColossalaiModule):
|
||||
flatten: bool = True,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
position_embed_initializer: Callable = init.zeros_()
|
||||
position_embed_initializer: Callable = init.zeros_(),
|
||||
) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
embed = _parallel_patchembedding[tensor_parallel](
|
||||
|
Reference in New Issue
Block a user