mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 01:28:31 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -5,7 +5,6 @@ from typing import Callable
|
||||
from torch import dtype, nn
|
||||
|
||||
from colossalai.nn import init
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from ..parallel_1d import *
|
||||
from ..parallel_2d import *
|
||||
@@ -15,21 +14,21 @@ from ..utils import get_tensor_parallel_mode
|
||||
from ..vanilla import *
|
||||
from ._utils import ColossalaiModule
|
||||
|
||||
_parallel_linear = {None: VanillaLinear, '1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
|
||||
_parallel_linear = {None: VanillaLinear, "1d": Linear1D, "2d": Linear2D, "2.5d": Linear2p5D, "3d": Linear3D}
|
||||
|
||||
_parallel_classifier = {
|
||||
None: VanillaClassifier,
|
||||
'1d': Classifier1D,
|
||||
'2d': Classifier2D,
|
||||
'2.5d': Classifier2p5D,
|
||||
'3d': Classifier3D
|
||||
"1d": Classifier1D,
|
||||
"2d": Classifier2D,
|
||||
"2.5d": Classifier2p5D,
|
||||
"3d": Classifier3D,
|
||||
}
|
||||
|
||||
_vocab_parallel_classifier = {
|
||||
'1d': VocabParallelClassifier1D,
|
||||
'2d': VocabParallelClassifier2D,
|
||||
'2.5d': VocabParallelClassifier2p5D,
|
||||
'3d': VocabParallelClassifier3D
|
||||
"1d": VocabParallelClassifier1D,
|
||||
"2d": VocabParallelClassifier2D,
|
||||
"2.5d": VocabParallelClassifier2p5D,
|
||||
"3d": VocabParallelClassifier3D,
|
||||
}
|
||||
|
||||
|
||||
@@ -65,19 +64,21 @@ class Linear(ColossalaiModule):
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
**kwargs) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
**kwargs,
|
||||
) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
linear_cls = _parallel_linear[tensor_parallel]
|
||||
gather_output = kwargs.pop('gather_output', None)
|
||||
if 'gather_output' in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
|
||||
kwargs['gather_output'] = gather_output
|
||||
gather_output = kwargs.pop("gather_output", None)
|
||||
if "gather_output" in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
|
||||
kwargs["gather_output"] = gather_output
|
||||
layer = linear_cls(
|
||||
in_features,
|
||||
out_features,
|
||||
@@ -108,15 +109,17 @@ class Classifier(ColossalaiModule):
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features: int,
|
||||
num_classes: int,
|
||||
weight: nn.Parameter = None,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
vocab_parallel_limit: int = 2048) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
num_classes: int,
|
||||
weight: nn.Parameter = None,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
vocab_parallel_limit: int = 2048,
|
||||
) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
|
||||
layer = _parallel_classifier[tensor_parallel](
|
||||
|
Reference in New Issue
Block a user