[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -5,7 +5,6 @@ from typing import Callable
from torch import dtype, nn
from colossalai.nn import init
from colossalai.utils import get_current_device
from ..parallel_1d import *
from ..parallel_2d import *
@@ -15,21 +14,21 @@ from ..utils import get_tensor_parallel_mode
from ..vanilla import *
from ._utils import ColossalaiModule
_parallel_linear = {None: VanillaLinear, '1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
_parallel_linear = {None: VanillaLinear, "1d": Linear1D, "2d": Linear2D, "2.5d": Linear2p5D, "3d": Linear3D}
_parallel_classifier = {
None: VanillaClassifier,
'1d': Classifier1D,
'2d': Classifier2D,
'2.5d': Classifier2p5D,
'3d': Classifier3D
"1d": Classifier1D,
"2d": Classifier2D,
"2.5d": Classifier2p5D,
"3d": Classifier3D,
}
_vocab_parallel_classifier = {
'1d': VocabParallelClassifier1D,
'2d': VocabParallelClassifier2D,
'2.5d': VocabParallelClassifier2p5D,
'3d': VocabParallelClassifier3D
"1d": VocabParallelClassifier1D,
"2d": VocabParallelClassifier2D,
"2.5d": VocabParallelClassifier2p5D,
"3d": VocabParallelClassifier3D,
}
@@ -65,19 +64,21 @@ class Linear(ColossalaiModule):
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs) -> None:
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs,
) -> None:
tensor_parallel = get_tensor_parallel_mode()
linear_cls = _parallel_linear[tensor_parallel]
gather_output = kwargs.pop('gather_output', None)
if 'gather_output' in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
kwargs['gather_output'] = gather_output
gather_output = kwargs.pop("gather_output", None)
if "gather_output" in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
kwargs["gather_output"] = gather_output
layer = linear_cls(
in_features,
out_features,
@@ -108,15 +109,17 @@ class Classifier(ColossalaiModule):
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
vocab_parallel_limit: int = 2048) -> None:
def __init__(
self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
vocab_parallel_limit: int = 2048,
) -> None:
tensor_parallel = get_tensor_parallel_mode()
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
layer = _parallel_classifier[tensor_parallel](