[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -9,6 +9,11 @@ from .layers import (
)
__all__ = [
"VanillaLayerNorm", "VanillaPatchEmbedding", "VanillaClassifier", "DropPath", "WrappedDropout", "WrappedDropPath",
"VanillaLinear"
"VanillaLayerNorm",
"VanillaPatchEmbedding",
"VanillaClassifier",
"DropPath",
"WrappedDropout",
"WrappedDropPath",
"VanillaLinear",
]

View File

@@ -15,7 +15,7 @@ from colossalai.utils.cuda import get_current_device
from ..utils import to_2tuple
def drop_path(x, drop_prob: float = 0., training: bool = False):
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
@@ -28,12 +28,12 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
drop_prob (float, optional): probability of dropping path, defaults 0.0.
training (bool, optional): whether in training progress, defaults False.
"""
if drop_prob == 0. or not training:
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
@@ -74,8 +74,7 @@ class WrappedDropout(nn.Module):
def __init__(self, p: float = 0.5, inplace: bool = False, mode=None):
super().__init__()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p))
self.p = p
self.inplace = inplace
if mode is None:
@@ -108,7 +107,7 @@ class WrappedDropPath(nn.Module):
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
def __init__(self, p: float = 0., mode=None):
def __init__(self, p: float = 0.0, mode=None):
super().__init__()
self.p = p
self.mode = mode
@@ -152,16 +151,18 @@ class VanillaPatchEmbedding(nn.Module):
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
img_size: int,
patch_size: int,
in_chans: int,
embed_size: int,
flatten: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
position_embed_initializer: Callable = init.zeros_()):
def __init__(
self,
img_size: int,
patch_size: int,
in_chans: int,
embed_size: int,
flatten: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
position_embed_initializer: Callable = init.zeros_(),
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
@@ -172,11 +173,13 @@ class VanillaPatchEmbedding(nn.Module):
self.flatten = flatten
self.weight = nn.Parameter(
torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype))
torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)
)
self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype))
self.cls_token = nn.Parameter(torch.zeros((1, 1, embed_size), device=get_current_device(), dtype=dtype))
self.pos_embed = nn.Parameter(
torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype))
torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype)
)
self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer)
@@ -188,11 +191,12 @@ class VanillaPatchEmbedding(nn.Module):
def forward(self, input_: Tensor) -> Tensor:
B, C, H, W = input_.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size)
if self.flatten:
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
cls_token = self.cls_token.expand(output.shape[0], -1, -1)
output = torch.cat((cls_token, output), dim=1)
@@ -219,14 +223,16 @@ class VanillaClassifier(nn.Module):
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
def __init__(
self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
):
super().__init__()
self.in_features = in_features
self.num_classes = num_classes
@@ -236,7 +242,8 @@ class VanillaClassifier(nn.Module):
self.has_weight = False
else:
self.weight = nn.Parameter(
torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype))
torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype)
)
self.has_weight = True
if bias:
self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype))
@@ -280,7 +287,7 @@ class VanillaLayerNorm(nn.Module):
self.normalized_shape = (normalized_shape,)
self.variance_epsilon = eps
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
self.weight = nn.Parameter(torch.ones(normalized_shape, **factory_kwargs))
if bias:
@@ -311,20 +318,22 @@ class VanillaLinear(nn.Module):
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs) -> None:
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs,
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.skip_bias_add = skip_bias_add
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
if bias:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))