[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -2,7 +2,6 @@ import threading
from typing import Callable, Dict, List
import torch
import torch.distributed as dist
from torch._C._distributed_rpc import PyRRef
from torch.futures import Future
@@ -15,7 +14,6 @@ from colossalai.legacy.pipeline.rpc._pipeline_base import Phase, PipelineEngineB
class FillDrainWorker(WorkerBase):
def _get_work_item_key(self) -> UniqueKey:
# execute backward first (if backward phase in work_list)
num_microbatches = self.num_microbatches
@@ -33,29 +31,40 @@ class FillDrainWorker(WorkerBase):
class FillDrainPipelineEngine(PipelineEngineBase):
def __init__(self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
chunk: int = 1,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None) -> None:
def __init__(
self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
chunk: int = 1,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None,
) -> None:
if chunk > 1:
assert num_microbatches % stage_num == 0, \
"if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
assert (
num_microbatches % stage_num == 0
), "if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
use_1F1B = False
super().__init__(FillDrainWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
metric, checkpoint, data_process_func)
super().__init__(
FillDrainWorker,
partition_fn,
stage_num,
num_microbatches,
device,
use_1F1B,
chunk,
criterion,
metric,
checkpoint,
data_process_func,
)
class OneFOneBWorker(WorkerBase):
def _get_work_item_key(self) -> UniqueKey:
# execute backward first (if backward phase in work_list)
pp_rank = self.pp_rank
@@ -77,8 +86,7 @@ class OneFOneBWorker(WorkerBase):
# change outstanding_range at:
# 1. forward times reach actual_stage_num, this is the end of continuous forward
# 2. forward times reach num_microbatches, this is the end of 1F1B mode
if not is_last_stage and \
target_key.phase == Phase.FORWARD:
if not is_last_stage and target_key.phase == Phase.FORWARD:
if target_key.microbatch_id == actual_stage_num - 1 and num_microbatches > 2:
# Why need num_microbatches > 2 ? Because there is no steady stage when num_microbatches <= 2
outstanding_min = actual_stage_num - pp_rank - 1
@@ -91,30 +99,41 @@ class OneFOneBWorker(WorkerBase):
class OneFOneBPipelineEngine(PipelineEngineBase):
def __init__(self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
chunk: int = 1,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None) -> None:
def __init__(
self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
chunk: int = 1,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None,
) -> None:
if chunk > 1:
assert num_microbatches % stage_num == 0, \
"if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
assert (
num_microbatches % stage_num == 0
), "if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!"
# assert num_microbatches > stage_num * chunk, "num_microbatches must be greater than stage_num * chunk"
use_1F1B = True
super().__init__(OneFOneBWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
metric, checkpoint, data_process_func)
super().__init__(
OneFOneBWorker,
partition_fn,
stage_num,
num_microbatches,
device,
use_1F1B,
chunk,
criterion,
metric,
checkpoint,
data_process_func,
)
class ChimeraWorker(WorkerBase):
def _get_producer_consumer(self) -> None:
rank = self.pp_rank
min_pp_rank = (rank // self.actual_stage_num) * self.actual_stage_num
@@ -143,11 +162,12 @@ class ChimeraWorker(WorkerBase):
forward_block_size = 1 if self.num_microbatches < stage_num else self.num_microbatches // stage_num
forward_block_num = self.forward_times // forward_block_size
if self.forward_times >= real_microbatch_num or \
((pp_rank + 1) % stage_num == 0 and forward_block_num > self.backward_times):
if self.forward_times >= real_microbatch_num or (
(pp_rank + 1) % stage_num == 0 and forward_block_num > self.backward_times
):
target_phase = Phase.BACKWARD
target_microbatch_id = self.backward_times
else: # others
else: # others
target_phase = Phase.FORWARD
target_microbatch_id = self.forward_times
@@ -168,7 +188,7 @@ class ChimeraWorker(WorkerBase):
# from corresponding up stage
pp_rank = self.pp_rank
stage_num = self.actual_stage_num
device = self.device
self.device
if pp_rank < stage_num:
super()._initialize_partition()
else:
@@ -242,27 +262,38 @@ class ChimeraWorker(WorkerBase):
class ChimeraPipelineEngine(PipelineEngineBase):
def __init__(self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None) -> None:
assert num_microbatches % stage_num == 0, \
"In Chimera, num_microbatches must be the multiply of stage_num!"
def __init__(
self,
partition_fn: Callable,
stage_num: int,
num_microbatches: int,
device: str,
criterion: Callable = None,
metric: Callable = None,
checkpoint: bool = False,
data_process_func: Callable = None,
) -> None:
assert num_microbatches % stage_num == 0, "In Chimera, num_microbatches must be the multiply of stage_num!"
use_1F1B = False
chunk = 1
super().__init__(ChimeraWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
metric, checkpoint, data_process_func)
super().__init__(
ChimeraWorker,
partition_fn,
stage_num,
num_microbatches,
device,
use_1F1B,
chunk,
criterion,
metric,
checkpoint,
data_process_func,
)
def _consume_constraint(self, microbatch_id: int, forward_only: bool, input_pp_ranks: List[int],
output_pp_ranks: List[int], ret_future):
def _consume_constraint(
self, microbatch_id: int, forward_only: bool, input_pp_ranks: List[int], output_pp_ranks: List[int], ret_future
):
pass
def _create_pp_rank_to_rpc_worker_id(self) -> None: