[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -38,8 +38,7 @@ def _binary_partition(weights: List, start: int, end: int):
def _heap_addition(weights: List, intervals: int, add_cnt: int):
"""
"""
""" """
def _heap_push(heap, st, ed):
value = weights[ed - 1]
@@ -113,8 +112,9 @@ def _binary_search(weights, num):
def partition_uniform(num_items, pipeline_parallel_size, num_chunks):
assert num_items % num_chunks == 0, \
"Layer length should be divided by the number of chunks, otherwise parameter method is recommended"
assert (
num_items % num_chunks == 0
), "Layer length should be divided by the number of chunks, otherwise parameter method is recommended"
logger = get_dist_logger()
parts = [[] for _ in range(pipeline_parallel_size)]
@@ -162,7 +162,7 @@ def build_kwargs_for_module(function, input_tensor, kw_dict):
elif isinstance(input_tensor, torch.Tensor):
kwargs_offset = 1
elif isinstance(input_tensor, (tuple, OrderedDict)):
#assert isinstance(input_tensor, tuple), f'input_tensor should be a torch.Tensor or a tuple object.'
# assert isinstance(input_tensor, tuple), f'input_tensor should be a torch.Tensor or a tuple object.'
# Huggingface will take their own structures based on OrderedDict as the output
# between layers so we've to close this check.
kwargs_offset = len(input_tensor)
@@ -204,21 +204,21 @@ def exec_func_with_kwargs(func, kw_dict, input_tensor, kwargs):
kwargs[k] = rst
return input_tensor
if isinstance(input_tensor, tuple):
assert len(input_tensor) > 0, f'input_tensor should not be empty, when kw_dict is None.'
assert len(input_tensor) > 0, f"input_tensor should not be empty, when kw_dict is None."
sig = inspect.signature(func)
func_args_num = len(sig.parameters)
assert func_args_num <= len(
input_tensor), f'func requires {func_args_num} arguments, but input_tensors only have {len(input_tensor)}.'
input_tensor
), f"func requires {func_args_num} arguments, but input_tensors only have {len(input_tensor)}."
if func_args_num < len(input_tensor):
return func(*input_tensor[:func_args_num])
else:
return func(*input_tensor)
assert isinstance(input_tensor, torch.Tensor), 'input_tensor should be a type of torch.Tensor or tuple.'
assert isinstance(input_tensor, torch.Tensor), "input_tensor should be a type of torch.Tensor or tuple."
return func(input_tensor)
def exec_funcs_with_kwargs(func_dict, func_key, input_tensor, kwargs):
assert func_key in func_dict, f"{func_key} is not in the function_dict."
funcs_to_exec = func_dict[func_key]
if isinstance(funcs_to_exec, list):
@@ -243,7 +243,7 @@ def call_module(module, args=None, kwargs=None):
forward_func = module.forward
sig = inspect.signature(forward_func)
param_nums = len(sig.parameters)
feed_nums = len(args) + len(kwargs)
len(args) + len(kwargs)
args_needed_nums = param_nums - len(kwargs)
args_needed = args[:args_needed_nums]
if isinstance(module, CheckpointModule):
@@ -256,17 +256,17 @@ def call_module(module, args=None, kwargs=None):
def customized_partition(exec_seq):
'''
"""
This function will analyze the exec_seq. In the exec_seq, users will use 'SPLIT_NODE' as an
annotation to note the partition point.
'''
"""
customized_parts = {}
start = 0
stop = 0
rank = 0
for element in exec_seq:
if isinstance(element, str):
if element == 'SPLIT_NODE':
if element == "SPLIT_NODE":
customized_parts[rank] = [(start, stop)]
start = stop
rank += 1