[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -27,12 +27,14 @@ class SaveCheckpointHook(BaseHook):
depend on the hooks order in the hook list.
"""
def __init__(self,
interval: int = 1,
checkpoint_dir: str = None,
model: torch.nn.Module = None,
save_by_iter: bool = False,
priority: int = 10):
def __init__(
self,
interval: int = 1,
checkpoint_dir: str = None,
model: torch.nn.Module = None,
save_by_iter: bool = False,
priority: int = 10,
):
super().__init__(priority=priority)
self.interval = interval
self.checkpoint_dir = checkpoint_dir
@@ -52,22 +54,23 @@ class SaveCheckpointHook(BaseHook):
self.model = self.model if self.model is not None else trainer.engine.model
def after_train_iter(self, trainer, output, label, loss):
"""Saves the model after a training iter.
"""
"""Saves the model after a training iter."""
# save by interval
if self.save_by_iter and trainer.cur_step % self.interval == 0:
save_checkpoint(self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer,
self._lr_scheduler)
self.logger.info(f'checkpoint for iteration {trainer.cur_step} is saved to {self.checkpoint_dir}',
ranks=[0])
save_checkpoint(
self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer, self._lr_scheduler
)
self.logger.info(
f"checkpoint for iteration {trainer.cur_step} is saved to {self.checkpoint_dir}", ranks=[0]
)
else:
pass
def after_train_epoch(self, trainer):
"""Saves the model after a training epoch.
"""
"""Saves the model after a training epoch."""
# save by interval
if trainer.cur_epoch % self.interval == 0:
save_checkpoint(self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer,
self._lr_scheduler)
self.logger.info(f'checkpoint for epoch {trainer.cur_epoch} is saved to {self.checkpoint_dir}', ranks=[0])
save_checkpoint(
self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer, self._lr_scheduler
)
self.logger.info(f"checkpoint for epoch {trainer.cur_epoch} is saved to {self.checkpoint_dir}", ranks=[0])