[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -51,20 +51,20 @@ class LogMetricByStepHook(BaseHook):
super().__init__(priority)
def after_train_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['train'].items():
trainer.states["step_metrics"] = dict()
for metric_name, metric_calculator in trainer.states["metrics"]["train"].items():
if isinstance(metric_calculator, ThroughputMetric):
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_info()
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_info()
else:
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_value()
def after_test_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['test'].items():
trainer.states["step_metrics"] = dict()
for metric_name, metric_calculator in trainer.states["metrics"]["test"].items():
if isinstance(metric_calculator, ThroughputMetric):
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_info()
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_info()
else:
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_value()
@HOOKS.register_module
@@ -85,24 +85,24 @@ class LogMetricByEpochHook(LogByEpochHook):
def _get_str(self, trainer, mode):
msg = []
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
msg.append(f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
msg = ' | '.join(msg)
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
msg.append(f"{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}")
msg = " | ".join(msg)
return msg
def after_train_epoch(self, trainer):
if self._is_epoch_to_log(trainer):
msg = self._get_str(trainer=trainer, mode='train')
msg = self._get_str(trainer=trainer, mode="train")
if self._is_rank_to_log:
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg}')
self.logger.info(f"[Epoch {trainer.cur_epoch} / Train]: {msg}")
# f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
def after_test_epoch(self, trainer):
if self._is_epoch_to_log(trainer):
msg = self._get_str(trainer=trainer, mode='test')
msg = self._get_str(trainer=trainer, mode="test")
if self._is_rank_to_log:
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
self.logger.info(f"[Epoch {trainer.cur_epoch} / Test]: {msg}")
# f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
@@ -145,8 +145,11 @@ class TensorboardHook(BaseHook):
self._is_valid_rank_to_log = True
# check for
if gpc.is_initialized(ParallelMode.PIPELINE) and \
not gpc.is_last_rank(ParallelMode.PIPELINE) and self._is_valid_rank_to_log:
if (
gpc.is_initialized(ParallelMode.PIPELINE)
and not gpc.is_last_rank(ParallelMode.PIPELINE)
and self._is_valid_rank_to_log
):
raise ValueError("Tensorboard hook can only log on the last rank of pipeline process group")
if self._is_valid_rank_to_log:
@@ -157,38 +160,38 @@ class TensorboardHook(BaseHook):
rank = 0
# create workspace
log_dir = osp.join(log_dir, f'{parallel_mode}_rank_{rank}')
log_dir = osp.join(log_dir, f"{parallel_mode}_rank_{rank}")
os.makedirs(log_dir, exist_ok=True)
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f'_rank_{rank}')
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f"_rank_{rank}")
def _log_by_iter(self, trainer, mode: str):
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
if metric_calculator.epoch_only:
continue
val = metric_calculator.get_last_step_value()
if self._is_valid_rank_to_log:
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
self.writer.add_scalar(f"{metric_name}/{mode}", val, trainer.cur_step)
def _log_by_epoch(self, trainer, mode: str):
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
if metric_calculator.epoch_only:
val = metric_calculator.get_accumulated_value()
if self._is_valid_rank_to_log:
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
self.writer.add_scalar(f"{metric_name}/{mode}", val, trainer.cur_step)
def after_test_iter(self, trainer, *args):
self._log_by_iter(trainer, mode='test')
self._log_by_iter(trainer, mode="test")
def after_test_epoch(self, trainer):
self._log_by_epoch(trainer, mode='test')
self._log_by_epoch(trainer, mode="test")
def after_train_iter(self, trainer, *args):
self._log_by_iter(trainer, mode='train')
self._log_by_iter(trainer, mode="train")
def after_train_epoch(self, trainer):
self._log_by_epoch(trainer, mode='train')
self._log_by_epoch(trainer, mode="train")
@HOOKS.register_module
@@ -206,13 +209,15 @@ class LogTimingByEpochHook(LogByEpochHook):
ignore_num_train_steps (int, optional): Number of training steps to ignore, defaults to 0.
"""
def __init__(self,
timer: MultiTimer,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
ignore_num_train_steps: int = 0) -> None:
def __init__(
self,
timer: MultiTimer,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
ignore_num_train_steps: int = 0,
) -> None:
super().__init__(logger=logger, interval=interval, priority=priority)
self._timer = timer
self._log_eval = log_eval
@@ -229,33 +234,31 @@ class LogTimingByEpochHook(LogByEpochHook):
if timer_name.startswith(mode):
last_elapsed_time = timer.get_elapsed_time()
if timer.has_history:
if timer_name == 'Train-step' and not self._is_train_step_history_trimmed:
timer._history = timer._history[self._ignore_num_train_steps:]
if timer_name == "Train-step" and not self._is_train_step_history_trimmed:
timer._history = timer._history[self._ignore_num_train_steps :]
self._is_train_step_history_trimmed = True
history_mean = timer.get_history_mean()
history_sum = timer.get_history_sum()
timer.get_history_sum()
msg.append(
f'{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s'
f"{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s"
)
else:
msg.append(f'{timer_name}: last = {_format_number(last_elapsed_time)} s')
msg.append(f"{timer_name}: last = {_format_number(last_elapsed_time)} s")
msg = ' | '.join(msg)
msg = " | ".join(msg)
return msg
def after_train_epoch(self, trainer):
"""Writes log after finishing a training epoch.
"""
"""Writes log after finishing a training epoch."""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
msg = self._get_message('Train')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg} | #steps/epoch = {trainer.steps_per_epoch}')
msg = self._get_message("Train")
self.logger.info(f"[Epoch {trainer.cur_epoch} / Train]: {msg} | #steps/epoch = {trainer.steps_per_epoch}")
def after_test_epoch(self, trainer):
"""Writes log after finishing a testing epoch.
"""
"""Writes log after finishing a testing epoch."""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
msg = self._get_message('Test')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
msg = self._get_message("Test")
self.logger.info(f"[Epoch {trainer.cur_epoch} / Test]: {msg}")
@HOOKS.register_module
@@ -272,31 +275,28 @@ class LogMemoryByEpochHook(LogByEpochHook):
"""
def __init__(
self,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
report_cpu: bool = False, # no reference
self,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
report_cpu: bool = False, # no reference
) -> None:
super().__init__(logger=logger, interval=interval, priority=priority)
self._log_eval = log_eval
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
def before_train(self, trainer):
"""Resets before training.
"""
"""Resets before training."""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
report_memory_usage('Before-train', self.logger)
report_memory_usage("Before-train", self.logger)
def after_train_epoch(self, trainer):
"""Writes log after finishing a training epoch.
"""
"""Writes log after finishing a training epoch."""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Train]', self.logger)
report_memory_usage(f"[Epoch {trainer.cur_epoch} / Train]", self.logger)
def after_test(self, trainer):
"""Reports after testing.
"""
"""Reports after testing."""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Test]', self.logger)
report_memory_usage(f"[Epoch {trainer.cur_epoch} / Test]", self.logger)