[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -35,8 +35,7 @@ class Metric(ABC):
@property
def epoch_only(self):
"""Returns :attr:`epoch_only`.
"""
"""Returns :attr:`epoch_only`."""
return self._epoch_only
@abstractmethod
@@ -44,20 +43,16 @@ class Metric(ABC):
"""Resets the metric to it's initial state.
By default, this is called at the start of each epoch.
"""
pass
@abstractmethod
def update(self, *args, **kwargs) -> None:
"""Updates the metric's state using the passed batch output.
By default, this is called once for each batch.
"""
pass
@abstractmethod
def get_last_step_value(self) -> float:
"""Returns the metric value in the last iteration.
"""
pass
"""Returns the metric value in the last iteration."""
@abstractmethod
def get_accumulated_value(self):
@@ -67,7 +62,6 @@ class Metric(ABC):
:return: the actual quantity of interest
:rtype: Any
"""
pass
@staticmethod
@abstractmethod
@@ -77,7 +71,6 @@ class Metric(ABC):
:return: The result of comparison
:rtype: bool
"""
pass
class LossMetric(Metric):
@@ -94,8 +87,7 @@ class LossMetric(Metric):
self.count = 0
def reset(self) -> None:
"""Sets :attr:`last_step_loss` and :attr:`accum_loss` to zero.
"""
"""Sets :attr:`last_step_loss` and :attr:`accum_loss` to zero."""
self.last_step_loss.zero_()
self.accum_loss.zero_()
self.count = 0
@@ -114,8 +106,7 @@ class LossMetric(Metric):
self.count += 1
def get_accumulated_value(self):
"""Returns accumulated loss.
"""
"""Returns accumulated loss."""
if gpc.is_initialized(ParallelMode.DATA):
dist.all_reduce(self.accum_loss, op=dist.ReduceOp.SUM, group=gpc.get_group(ParallelMode.DATA))
self.accum_loss.div_(gpc.get_world_size(ParallelMode.DATA))
@@ -124,8 +115,7 @@ class LossMetric(Metric):
return self.accum_loss.item()
def get_last_step_value(self) -> float:
"""Returns :attr:`last_step_loss`.
"""
"""Returns :attr:`last_step_loss`."""
return self.last_step_loss.cpu().item()
@staticmethod
@@ -141,7 +131,7 @@ class LearningRateMetric(Metric):
initial_lr (float, optional): Initial learning rate, defaults to 0.0.
"""
def __init__(self, epoch_only: bool, initial_lr: float = 0.):
def __init__(self, epoch_only: bool, initial_lr: float = 0.0):
super().__init__(epoch_only=epoch_only)
self.lr = initial_lr
@@ -241,8 +231,8 @@ class MetricHook(BaseHook):
self._is_stage_to_compute = is_no_pp_or_last_stage()
def _check_metric_states_initialization(self, trainer):
if 'metrics' not in trainer.states:
self.init_runner_states(trainer, 'metrics', dict(train={}, test={}))
if "metrics" not in trainer.states:
self.init_runner_states(trainer, "metrics", dict(train={}, test={}))
@HOOKS.register_module
@@ -266,8 +256,8 @@ class LossHook(MetricHook):
self.test_loss = LossMetric(epoch_only=True)
# register the metric calculator
trainer.states['metrics']['train']['Loss'] = self.train_loss
trainer.states['metrics']['test']['Loss'] = self.test_loss
trainer.states["metrics"]["train"]["Loss"] = self.train_loss
trainer.states["metrics"]["test"]["Loss"] = self.test_loss
def before_train_epoch(self, trainer):
if self._is_stage_to_compute:
@@ -307,7 +297,7 @@ class AccuracyHook(MetricHook):
self.metric = AccuracyMetric(epoch_only=True, accuracy_func=self.accuracy_func)
# register the metric
trainer.states['metrics']['test']['Accuracy'] = self.metric
trainer.states["metrics"]["test"]["Accuracy"] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
@@ -356,8 +346,9 @@ class ThroughputMetric(Metric):
if self._use_local:
self.last_step_num_samples *= gpc.get_world_size(ParallelMode.DATA)
else:
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / gpc.get_world_size(
ParallelMode.DATA
)
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
sample_per_sec = _format_number(self.last_step_num_samples / (self.last_step_used_time + 1e-12).item())
@@ -367,8 +358,9 @@ class ThroughputMetric(Metric):
if self._use_local:
self.last_step_num_samples *= gpc.get_world_size(ParallelMode.DATA)
else:
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / gpc.get_world_size(
ParallelMode.DATA
)
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
sample_per_sec = _format_number(self.last_step_num_samples / (self.last_step_used_time + 1e-12).item())
@@ -379,8 +371,9 @@ class ThroughputMetric(Metric):
return f"{sample_per_sec} sample_per_sec"
def get_accumulated_value(self) -> float:
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / gpc.get_world_size(
ParallelMode.DATA
)
self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA)
return (self.accumulated_num_samples / (self.accumulated_used_time + 1e-12)).item()
@@ -411,14 +404,16 @@ class ThroughputHook(MetricHook):
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = ThroughputMetric(epoch_only=True,
ignored_steps=self.ignored_steps,
tflop_per_step=self._tflop_per_step,
use_local=self._use_local)
self.metric = ThroughputMetric(
epoch_only=True,
ignored_steps=self.ignored_steps,
tflop_per_step=self._tflop_per_step,
use_local=self._use_local,
)
# register the metric
trainer.states['metrics']['train']['Throughput'] = self.metric
trainer.states['metrics']['test']['Throughput'] = self.metric
trainer.states["metrics"]["train"]["Throughput"] = self.metric
trainer.states["metrics"]["test"]["Throughput"] = self.metric
def before_train_epoch(self, trainer):
if self._is_stage_to_compute:
@@ -426,8 +421,9 @@ class ThroughputHook(MetricHook):
def after_train_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.engine.schedule.batch_size,
trainer._timer.get_timer('Train-step').get_elapsed_time())
self.metric.update(
trainer.engine.schedule.batch_size, trainer._timer.get_timer("Train-step").get_elapsed_time()
)
def before_test(self, trainer):
if self._is_stage_to_compute:
@@ -435,5 +431,6 @@ class ThroughputHook(MetricHook):
def after_test_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.engine.schedule.batch_size,
trainer._timer.get_timer('Test-step').get_elapsed_time())
self.metric.update(
trainer.engine.schedule.batch_size, trainer._timer.get_timer("Test-step").get_elapsed_time()
)