[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -28,7 +28,6 @@ def copy_to_device(obj, device):
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, activation_offload=False, *args):
check_backward_validity(args)
@@ -42,7 +41,7 @@ class CheckpointFunction(torch.autograd.Function):
ctx.fwd_seed_states = get_states(copy=True)
ctx.fwd_current_mode = get_current_mode()
if hasattr(torch, 'is_autocast_enabled'):
if hasattr(torch, "is_autocast_enabled"):
ctx.had_autocast_in_fwd = torch.is_autocast_enabled()
else:
ctx.had_autocast_in_fwd = False
@@ -62,7 +61,7 @@ class CheckpointFunction(torch.autograd.Function):
for i, arg in enumerate(args):
if torch.is_tensor(arg):
if activation_offload:
tensor_inputs.append(copy_to_device(arg, 'cpu'))
tensor_inputs.append(copy_to_device(arg, "cpu"))
else:
tensor_inputs.append(arg)
ctx.tensor_indices.append(i)
@@ -79,8 +78,10 @@ class CheckpointFunction(torch.autograd.Function):
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad() or when an `inputs` parameter is "
"passed to .backward(). Please use .backward() and do not pass its `inputs` argument.")
raise RuntimeError(
"Checkpointing is not compatible with .grad() or when an `inputs` parameter is "
"passed to .backward(). Please use .backward() and do not pass its `inputs` argument."
)
# Copy the list to avoid modifying original list.
inputs = list(ctx.inputs)
tensor_indices = ctx.tensor_indices
@@ -131,8 +132,7 @@ class CheckpointFunction(torch.autograd.Function):
outputs_with_grad.append(outputs[i])
args_with_grad.append(args[i])
if len(outputs_with_grad) == 0:
raise RuntimeError("none of output has requires_grad=True,"
" this checkpoint() is not necessary")
raise RuntimeError("none of output has requires_grad=True," " this checkpoint() is not necessary")
torch.autograd.backward(outputs_with_grad, args_with_grad)
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None for inp in detached_inputs)
return (None, None) + grads
@@ -169,7 +169,7 @@ def _checkpoint_without_reentrant(function, activation_offload=False, *args):
fwd_current_mode = get_current_mode()
# check if use autocast
if hasattr(torch, 'is_autocast_enabled'):
if hasattr(torch, "is_autocast_enabled"):
has_autocast_in_fwd = torch.is_autocast_enabled()
else:
has_autocast_in_fwd = False
@@ -179,7 +179,7 @@ def _checkpoint_without_reentrant(function, activation_offload=False, *args):
weak_holder_list = []
# class for weakref.ref
class Holder():
class Holder:
pass
# return a Holder object for later unpack process
@@ -226,19 +226,20 @@ def _checkpoint_without_reentrant(function, activation_offload=False, *args):
# rerun forward, the inner_pack will store all the activations in storage
if has_autocast_in_fwd:
with torch.enable_grad(), \
torch.cuda.amp.autocast(), \
torch.autograd.graph.saved_tensors_hooks(inner_pack, inner_unpack):
with torch.enable_grad(), torch.cuda.amp.autocast(), torch.autograd.graph.saved_tensors_hooks(
inner_pack, inner_unpack
):
_unused = function(*args)
else:
with torch.enable_grad(), \
torch.autograd.graph.saved_tensors_hooks(inner_pack, inner_unpack):
with torch.enable_grad(), torch.autograd.graph.saved_tensors_hooks(inner_pack, inner_unpack):
_unused = function(*args)
if x not in storage:
raise RuntimeError("Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
" recomputation being triggered in between, this is not currently supported. Please"
" open an issue with details on your use case so that we can prioritize adding this.")
raise RuntimeError(
"Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
" recomputation being triggered in between, this is not currently supported. Please"
" open an issue with details on your use case so that we can prioritize adding this."
)
return storage[x]