[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -76,8 +76,10 @@ def report_memory_usage(message, logger=None, report_cpu=False):
gpu_cached = _bytes_to_MB(torch.cuda.memory_reserved())
gpu_max_cached = _bytes_to_MB(torch.cuda.max_memory_reserved())
full_log = f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " \
full_log = (
f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, "
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB"
)
if report_cpu:
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
@@ -91,7 +93,7 @@ def report_memory_usage(message, logger=None, report_cpu=False):
logger.info(full_log)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats()
@@ -106,10 +108,10 @@ def colo_device_memory_capacity(device: torch.device) -> int:
int: size in byte
"""
assert isinstance(device, torch.device)
if device.type == 'cpu':
if device.type == "cpu":
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
return colo_get_cpu_memory_capacity() / gpc.num_processes_on_current_node
if device.type == 'cuda':
if device.type == "cuda":
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
@@ -123,16 +125,16 @@ def colo_device_memory_used(device: torch.device) -> int:
Returns:
int: memory size in bytes
"""
if device.type == 'cpu':
if device.type == "cpu":
mem_info = _get_cpu_memory_info()
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used.
# Each process consumes the same amount of memory.
ret = mem_info.used / gpc.num_processes_on_current_node
return ret
elif device.type == 'cuda':
elif device.type == "cuda":
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats(device)
return ret
@@ -145,9 +147,9 @@ def colo_set_process_memory_fraction(ratio: float) -> None:
Args:
ratio (float): a ratio between 0. ~ 1.
"""
if version.parse(torch.__version__) < version.parse('1.8'):
logger = get_dist_logger('colo_set_process_memory_fraction')
logger.warning('colo_set_process_memory_fraction failed because torch version is less than 1.8')
if version.parse(torch.__version__) < version.parse("1.8"):
logger = get_dist_logger("colo_set_process_memory_fraction")
logger.warning("colo_set_process_memory_fraction failed because torch version is less than 1.8")
return
global _GLOBAL_CUDA_MEM_FRACTION
_GLOBAL_CUDA_MEM_FRACTION = ratio