mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -49,41 +49,46 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
bias_correction=True,
|
||||
betas=(0.9, 0.999),
|
||||
eps=1e-6,
|
||||
weight_decay=0.01,
|
||||
amsgrad=False,
|
||||
adam_w_mode=True,
|
||||
grad_averaging=True,
|
||||
set_grad_none=True,
|
||||
max_grad_norm=1.0,
|
||||
use_nvlamb=False):
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
bias_correction=True,
|
||||
betas=(0.9, 0.999),
|
||||
eps=1e-6,
|
||||
weight_decay=0.01,
|
||||
amsgrad=False,
|
||||
adam_w_mode=True,
|
||||
grad_averaging=True,
|
||||
set_grad_none=True,
|
||||
max_grad_norm=1.0,
|
||||
use_nvlamb=False,
|
||||
):
|
||||
if amsgrad:
|
||||
raise RuntimeError('FusedLAMB does not support the AMSGrad variant.')
|
||||
defaults = dict(lr=lr,
|
||||
bias_correction=bias_correction,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
grad_averaging=grad_averaging,
|
||||
max_grad_norm=max_grad_norm)
|
||||
raise RuntimeError("FusedLAMB does not support the AMSGrad variant.")
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
bias_correction=bias_correction,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
grad_averaging=grad_averaging,
|
||||
max_grad_norm=max_grad_norm,
|
||||
)
|
||||
super(FusedLAMB, self).__init__(params, defaults)
|
||||
if multi_tensor_applier.available:
|
||||
from colossalai.kernel.op_builder import FusedOptimBuilder
|
||||
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
|
||||
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor([0],
|
||||
dtype=torch.int,
|
||||
device=self.param_groups[0]["params"][0].device)
|
||||
self._dummy_overflow_buf = torch.tensor(
|
||||
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
|
||||
)
|
||||
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb
|
||||
else:
|
||||
raise RuntimeError('FusedLAMB requires cuda extensions')
|
||||
raise RuntimeError("FusedLAMB requires cuda extensions")
|
||||
|
||||
self.adam_w_mode = 1 if adam_w_mode else 0
|
||||
self.set_grad_none = set_grad_none
|
||||
@@ -92,7 +97,7 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
def zero_grad(self):
|
||||
if self.set_grad_none:
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
for p in group["params"]:
|
||||
p.grad = None
|
||||
else:
|
||||
super(FusedLAMB, self).zero_grad()
|
||||
@@ -111,7 +116,7 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
# create separate grad lists for fp32 and fp16 params
|
||||
g_all_32, g_all_16 = [], []
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
if p.dtype == torch.float32:
|
||||
@@ -119,7 +124,7 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
elif p.dtype == torch.float16:
|
||||
g_all_16.append(p.grad.data)
|
||||
else:
|
||||
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
|
||||
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
|
||||
|
||||
device = self.param_groups[0]["params"][0].device
|
||||
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||
@@ -130,63 +135,91 @@ class FusedLAMB(torch.optim.Optimizer):
|
||||
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]
|
||||
|
||||
# blend two grad norms to get global grad norm
|
||||
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf,
|
||||
[[g_norm_32, g_norm_16]], False)[0]
|
||||
max_grad_norm = self.defaults['max_grad_norm']
|
||||
global_grad_norm = multi_tensor_applier(
|
||||
self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False
|
||||
)[0]
|
||||
max_grad_norm = self.defaults["max_grad_norm"]
|
||||
|
||||
for group in self.param_groups:
|
||||
bias_correction = 1 if group['bias_correction'] else 0
|
||||
beta1, beta2 = group['betas']
|
||||
grad_averaging = 1 if group['grad_averaging'] else 0
|
||||
bias_correction = 1 if group["bias_correction"] else 0
|
||||
beta1, beta2 = group["betas"]
|
||||
grad_averaging = 1 if group["grad_averaging"] else 0
|
||||
|
||||
# assume same step across group now to simplify things
|
||||
# per parameter step can be easily support by making it tensor, or pass list into kernel
|
||||
if 'step' in group:
|
||||
group['step'] += 1
|
||||
if "step" in group:
|
||||
group["step"] += 1
|
||||
else:
|
||||
group['step'] = 1
|
||||
group["step"] = 1
|
||||
|
||||
# create lists for multi-tensor apply
|
||||
g_16, p_16, m_16, v_16 = [], [], [], []
|
||||
g_32, p_32, m_32, v_32 = [], [], [], []
|
||||
|
||||
for p in group['params']:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
if p.grad.data.is_sparse:
|
||||
raise RuntimeError(
|
||||
'FusedLAMB does not support sparse gradients, please consider SparseAdam instead')
|
||||
"FusedLAMB does not support sparse gradients, please consider SparseAdam instead"
|
||||
)
|
||||
|
||||
state = self.state[p]
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p)
|
||||
state["exp_avg"] = torch.zeros_like(p)
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p)
|
||||
state["exp_avg_sq"] = torch.zeros_like(p)
|
||||
|
||||
if p.dtype == torch.float16:
|
||||
g_16.append(p.grad.data)
|
||||
p_16.append(p.data)
|
||||
m_16.append(state['exp_avg'])
|
||||
v_16.append(state['exp_avg_sq'])
|
||||
m_16.append(state["exp_avg"])
|
||||
v_16.append(state["exp_avg_sq"])
|
||||
elif p.dtype == torch.float32:
|
||||
g_32.append(p.grad.data)
|
||||
p_32.append(p.data)
|
||||
m_32.append(state['exp_avg'])
|
||||
v_32.append(state['exp_avg_sq'])
|
||||
m_32.append(state["exp_avg"])
|
||||
v_32.append(state["exp_avg_sq"])
|
||||
else:
|
||||
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
|
||||
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
|
||||
|
||||
if (len(g_16) > 0):
|
||||
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
|
||||
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
|
||||
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
|
||||
max_grad_norm, self.use_nvlamb)
|
||||
if (len(g_32) > 0):
|
||||
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
|
||||
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
|
||||
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
|
||||
max_grad_norm, self.use_nvlamb)
|
||||
if len(g_16) > 0:
|
||||
multi_tensor_applier(
|
||||
self.multi_tensor_lamb,
|
||||
self._dummy_overflow_buf,
|
||||
[g_16, p_16, m_16, v_16],
|
||||
group["lr"],
|
||||
beta1,
|
||||
beta2,
|
||||
group["eps"],
|
||||
group["step"],
|
||||
bias_correction,
|
||||
group["weight_decay"],
|
||||
grad_averaging,
|
||||
self.adam_w_mode,
|
||||
global_grad_norm,
|
||||
max_grad_norm,
|
||||
self.use_nvlamb,
|
||||
)
|
||||
if len(g_32) > 0:
|
||||
multi_tensor_applier(
|
||||
self.multi_tensor_lamb,
|
||||
self._dummy_overflow_buf,
|
||||
[g_32, p_32, m_32, v_32],
|
||||
group["lr"],
|
||||
beta1,
|
||||
beta2,
|
||||
group["eps"],
|
||||
group["step"],
|
||||
bias_correction,
|
||||
group["weight_decay"],
|
||||
grad_averaging,
|
||||
self.adam_w_mode,
|
||||
global_grad_norm,
|
||||
max_grad_norm,
|
||||
self.use_nvlamb,
|
||||
)
|
||||
|
||||
return loss
|
||||
|
Reference in New Issue
Block a user