[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -49,41 +49,46 @@ class FusedLAMB(torch.optim.Optimizer):
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.01,
amsgrad=False,
adam_w_mode=True,
grad_averaging=True,
set_grad_none=True,
max_grad_norm=1.0,
use_nvlamb=False):
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.01,
amsgrad=False,
adam_w_mode=True,
grad_averaging=True,
set_grad_none=True,
max_grad_norm=1.0,
use_nvlamb=False,
):
if amsgrad:
raise RuntimeError('FusedLAMB does not support the AMSGrad variant.')
defaults = dict(lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm)
raise RuntimeError("FusedLAMB does not support the AMSGrad variant.")
defaults = dict(
lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm,
)
super(FusedLAMB, self).__init__(params, defaults)
if multi_tensor_applier.available:
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
)
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb
else:
raise RuntimeError('FusedLAMB requires cuda extensions')
raise RuntimeError("FusedLAMB requires cuda extensions")
self.adam_w_mode = 1 if adam_w_mode else 0
self.set_grad_none = set_grad_none
@@ -92,7 +97,7 @@ class FusedLAMB(torch.optim.Optimizer):
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
for p in group["params"]:
p.grad = None
else:
super(FusedLAMB, self).zero_grad()
@@ -111,7 +116,7 @@ class FusedLAMB(torch.optim.Optimizer):
# create separate grad lists for fp32 and fp16 params
g_all_32, g_all_16 = [], []
for group in self.param_groups:
for p in group['params']:
for p in group["params"]:
if p.grad is None:
continue
if p.dtype == torch.float32:
@@ -119,7 +124,7 @@ class FusedLAMB(torch.optim.Optimizer):
elif p.dtype == torch.float16:
g_all_16.append(p.grad.data)
else:
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
device = self.param_groups[0]["params"][0].device
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
@@ -130,63 +135,91 @@ class FusedLAMB(torch.optim.Optimizer):
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]
# blend two grad norms to get global grad norm
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf,
[[g_norm_32, g_norm_16]], False)[0]
max_grad_norm = self.defaults['max_grad_norm']
global_grad_norm = multi_tensor_applier(
self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False
)[0]
max_grad_norm = self.defaults["max_grad_norm"]
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
grad_averaging = 1 if group['grad_averaging'] else 0
bias_correction = 1 if group["bias_correction"] else 0
beta1, beta2 = group["betas"]
grad_averaging = 1 if group["grad_averaging"] else 0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
if "step" in group:
group["step"] += 1
else:
group['step'] = 1
group["step"] = 1
# create lists for multi-tensor apply
g_16, p_16, m_16, v_16 = [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
for p in group['params']:
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
'FusedLAMB does not support sparse gradients, please consider SparseAdam instead')
"FusedLAMB does not support sparse gradients, please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
state["exp_avg_sq"] = torch.zeros_like(p)
if p.dtype == torch.float16:
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state['exp_avg'])
v_16.append(state['exp_avg_sq'])
m_16.append(state["exp_avg"])
v_16.append(state["exp_avg_sq"])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state['exp_avg'])
v_32.append(state['exp_avg_sq'])
m_32.append(state["exp_avg"])
v_32.append(state["exp_avg_sq"])
else:
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
if (len(g_16) > 0):
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
max_grad_norm, self.use_nvlamb)
if (len(g_32) > 0):
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
max_grad_norm, self.use_nvlamb)
if len(g_16) > 0:
multi_tensor_applier(
self.multi_tensor_lamb,
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
bias_correction,
group["weight_decay"],
grad_averaging,
self.adam_w_mode,
global_grad_norm,
max_grad_norm,
self.use_nvlamb,
)
if len(g_32) > 0:
multi_tensor_applier(
self.multi_tensor_lamb,
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
bias_correction,
group["weight_decay"],
grad_averaging,
self.adam_w_mode,
global_grad_norm,
max_grad_norm,
self.use_nvlamb,
)
return loss