[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -54,14 +54,9 @@ class FusedSGD(Optimizer):
The Nesterov version is analogously modified.
"""
def __init__(self,
params,
lr=required,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
wd_after_momentum=False):
def __init__(
self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False
):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
@@ -78,20 +73,21 @@ class FusedSGD(Optimizer):
if multi_tensor_applier.available:
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
)
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
else:
raise RuntimeError('FusedSGD requires cuda extensions')
raise RuntimeError("FusedSGD requires cuda extensions")
def __setstate__(self, state):
super(FusedSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
group.setdefault("nesterov", False)
def get_momentums(self, params):
momentums = []
@@ -101,13 +97,13 @@ class FusedSGD(Optimizer):
# torch.optim.SGD initializes momentum in the main loop, we have
# to do it here, and track whether or not we've done so, so that
# momentum application can be skipped in the main kernel.
if 'momentum_buffer' not in param_state:
if "momentum_buffer" not in param_state:
first_run = True
buf = param_state['momentum_buffer'] = torch.zeros_like(p)
buf = param_state["momentum_buffer"] = torch.zeros_like(p)
momentums.append(buf)
else:
first_run = False
momentums.append(param_state['momentum_buffer'])
momentums.append(param_state["momentum_buffer"])
return momentums, first_run
def step(self, closure=None):
@@ -122,10 +118,10 @@ class FusedSGD(Optimizer):
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
# For each group, there are 3 possible combinations we need to consider:
# grad_type, param_to_update_type, momentum_type
@@ -133,15 +129,26 @@ class FusedSGD(Optimizer):
# 2. fp32, fp32, fp32
# 3. fp16, fp32, fp32
g_l, p_l = [], []
for p in group['params']:
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError('FusedSGD does not support sparse gradients')
raise RuntimeError("FusedSGD does not support sparse gradients")
g_l.append(p.grad)
p_l.append(p)
m_l, first_run = self.get_momentums(p_l)
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, [g_l, p_l, m_l], weight_decay,
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0)
multi_tensor_applier(
self.multi_tensor_sgd,
self._dummy_overflow_buf,
[g_l, p_l, m_l],
weight_decay,
momentum,
dampening,
group["lr"],
nesterov,
first_run,
self.wd_after_momentum,
1.0,
)
return loss