mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 05:20:33 +00:00
[misc] update pre-commit and run all files (#4752)
* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
This commit is contained in:
@@ -54,14 +54,9 @@ class FusedSGD(Optimizer):
|
||||
The Nesterov version is analogously modified.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
params,
|
||||
lr=required,
|
||||
momentum=0,
|
||||
dampening=0,
|
||||
weight_decay=0,
|
||||
nesterov=False,
|
||||
wd_after_momentum=False):
|
||||
def __init__(
|
||||
self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False
|
||||
):
|
||||
if lr is not required and lr < 0.0:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if momentum < 0.0:
|
||||
@@ -78,20 +73,21 @@ class FusedSGD(Optimizer):
|
||||
|
||||
if multi_tensor_applier.available:
|
||||
from colossalai.kernel.op_builder import FusedOptimBuilder
|
||||
|
||||
fused_optim = FusedOptimBuilder().load()
|
||||
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor([0],
|
||||
dtype=torch.int,
|
||||
device=self.param_groups[0]["params"][0].device)
|
||||
self._dummy_overflow_buf = torch.tensor(
|
||||
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
|
||||
)
|
||||
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
|
||||
else:
|
||||
raise RuntimeError('FusedSGD requires cuda extensions')
|
||||
raise RuntimeError("FusedSGD requires cuda extensions")
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(FusedSGD, self).__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('nesterov', False)
|
||||
group.setdefault("nesterov", False)
|
||||
|
||||
def get_momentums(self, params):
|
||||
momentums = []
|
||||
@@ -101,13 +97,13 @@ class FusedSGD(Optimizer):
|
||||
# torch.optim.SGD initializes momentum in the main loop, we have
|
||||
# to do it here, and track whether or not we've done so, so that
|
||||
# momentum application can be skipped in the main kernel.
|
||||
if 'momentum_buffer' not in param_state:
|
||||
if "momentum_buffer" not in param_state:
|
||||
first_run = True
|
||||
buf = param_state['momentum_buffer'] = torch.zeros_like(p)
|
||||
buf = param_state["momentum_buffer"] = torch.zeros_like(p)
|
||||
momentums.append(buf)
|
||||
else:
|
||||
first_run = False
|
||||
momentums.append(param_state['momentum_buffer'])
|
||||
momentums.append(param_state["momentum_buffer"])
|
||||
return momentums, first_run
|
||||
|
||||
def step(self, closure=None):
|
||||
@@ -122,10 +118,10 @@ class FusedSGD(Optimizer):
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
weight_decay = group['weight_decay']
|
||||
momentum = group['momentum']
|
||||
dampening = group['dampening']
|
||||
nesterov = group['nesterov']
|
||||
weight_decay = group["weight_decay"]
|
||||
momentum = group["momentum"]
|
||||
dampening = group["dampening"]
|
||||
nesterov = group["nesterov"]
|
||||
|
||||
# For each group, there are 3 possible combinations we need to consider:
|
||||
# grad_type, param_to_update_type, momentum_type
|
||||
@@ -133,15 +129,26 @@ class FusedSGD(Optimizer):
|
||||
# 2. fp32, fp32, fp32
|
||||
# 3. fp16, fp32, fp32
|
||||
g_l, p_l = [], []
|
||||
for p in group['params']:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
if p.grad.data.is_sparse:
|
||||
raise RuntimeError('FusedSGD does not support sparse gradients')
|
||||
raise RuntimeError("FusedSGD does not support sparse gradients")
|
||||
g_l.append(p.grad)
|
||||
p_l.append(p)
|
||||
m_l, first_run = self.get_momentums(p_l)
|
||||
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, [g_l, p_l, m_l], weight_decay,
|
||||
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0)
|
||||
multi_tensor_applier(
|
||||
self.multi_tensor_sgd,
|
||||
self._dummy_overflow_buf,
|
||||
[g_l, p_l, m_l],
|
||||
weight_decay,
|
||||
momentum,
|
||||
dampening,
|
||||
group["lr"],
|
||||
nesterov,
|
||||
first_run,
|
||||
self.wd_after_momentum,
|
||||
1.0,
|
||||
)
|
||||
|
||||
return loss
|
||||
|
Reference in New Issue
Block a user