[misc] update pre-commit and run all files (#4752)

* [misc] update pre-commit

* [misc] run pre-commit

* [misc] remove useless configuration files

* [misc] ignore cuda for clang-format
This commit is contained in:
Hongxin Liu
2023-09-19 14:20:26 +08:00
committed by GitHub
parent 3c6b831c26
commit 079bf3cb26
1268 changed files with 50037 additions and 38444 deletions

View File

@@ -19,13 +19,11 @@ class NVMeOptimizer(torch.optim.Optimizer):
Raises:
ImportError: Raise if ``tensornvme`` is not installed.
"""
"""
def __init__(self,
params,
defaults: dict,
nvme_offload_fraction: float = 0.0,
offload_dir: Optional[str] = None) -> None:
def __init__(
self, params, defaults: dict, nvme_offload_fraction: float = 0.0, offload_dir: Optional[str] = None
) -> None:
assert 0.0 <= nvme_offload_fraction <= 1.0
super().__init__(params, defaults)
self.nvme_offload_fraction = float(nvme_offload_fraction)
@@ -34,9 +32,9 @@ class NVMeOptimizer(torch.optim.Optimizer):
from tensornvme import DiskOffloader
from tensornvme._C import get_backends
except ModuleNotFoundError:
raise ModuleNotFoundError('Please install tensornvme to use NVMeOptimizer')
raise ModuleNotFoundError("Please install tensornvme to use NVMeOptimizer")
self.offload_dir = offload_dir or tempfile.mkdtemp()
backend = 'uring' if 'uring' in get_backends() else 'aio'
backend = "uring" if "uring" in get_backends() else "aio"
self.offloader = DiskOffloader(self.offload_dir, 8, backend=backend)
else:
self.offload_dir = None
@@ -53,13 +51,17 @@ class NVMeOptimizer(torch.optim.Optimizer):
def _get_numel(self) -> int:
numel = 0
for group in self.param_groups:
for p in group['params']:
for p in group["params"]:
numel += p.storage().size()
return numel
def _post_state_init(self, param: Parameter) -> None:
numel = param.storage().size()
if self.offloader is not None and param.device.type == 'cpu' and numel + self.offloaded_numel <= self.can_offload_numel:
if (
self.offloader is not None
and param.device.type == "cpu"
and numel + self.offloaded_numel <= self.can_offload_numel
):
self.is_on_nvme[param] = True
self.offloaded_numel += numel
else:
@@ -70,11 +72,11 @@ class NVMeOptimizer(torch.optim.Optimizer):
return
assert len(self.prefetch_params) == 0 and len(self.param_to_prefetch_idx) == 0
for group in self.param_groups:
for p in group['params']:
for p in group["params"]:
if p.grad is None:
continue
if len(self.state[p]) > 0 and self.is_on_nvme[p]:
assert p.device.type == 'cpu'
assert p.device.type == "cpu"
self.param_to_prefetch_idx[p] = len(self.prefetch_params)
self.prefetch_params.append(p)
@@ -156,7 +158,7 @@ class NVMeOptimizer(torch.optim.Optimizer):
super().load_state_dict(state_dict)
def __del__(self) -> None:
if getattr(self, 'offloader', None) is not None:
if getattr(self, "offloader", None) is not None:
del self.offloader
if os.path.exists(self.offload_dir):
try: